Class XII : Maths Chapter 8 : Application Of Integrals

Questions and Solutions | Exercise 8.1 - NCERT Books

Question 1:

Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ Answer

The given equation of the ellipse, $\frac{x^2}{16} + \frac{y^2}{9} = 1$, can be represented as $x' + \frac{y'}{-5 - 4 - 3 - 2 - 10} + \frac{y'}{1 - 2 - 3 - 4} + \frac{x^4(4, 0)}{1 - 2 - 3 - 4 - 5} + \frac{x^4}{5} + \frac{y^2}{9} = 1$

It can be observed that the ellipse is symmetrical about x-axis and y-axis.

 \therefore Area bounded by ellipse = 4 × Area of OAB

Area of OAB =
$$\int_{0}^{4} y \, dx$$

= $\int_{0}^{4} 3\sqrt{1 - \frac{x^{2}}{16}} dx$
= $\frac{3}{4} \int_{0}^{4} \sqrt{16 - x^{2}} \, dx$
= $\frac{3}{4} \left[\frac{x}{2} \sqrt{16 - x^{2}} + \frac{16}{2} \sin^{-1} \frac{x}{4} \right]_{0}^{4}$
= $\frac{3}{4} \left[2\sqrt{16 - 16} + 8 \sin^{-1}(1) - 0 - 8 \sin^{-1}(0) \right]$
= $\frac{3}{4} \left[\frac{8\pi}{2} \right]$
= $\frac{3}{4} [4\pi]$
= 3π

herefore, area bounded by the ellipse = $4 \times 3\pi = 12\pi$ units

www.esaral.com

Å

∛Saral

Question 2:

Find the area of the region bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ Answer

The given equation of the ellipse can be represented as

It can be observed that the ellipse is symmetrical about x-axis and y-axis.

 \therefore Area bounded by ellipse = 4 \times Area OAB

www.esaral.com

$$\therefore \text{ Area of OAB} = \int_0^2 y \, dx$$

$$= \int_0^2 3\sqrt{1 - \frac{x^2}{4}} \, dx \qquad [\text{Using (1)}]$$

$$= \frac{3}{2} \int_0^2 \sqrt{4 - x^2} \, dx$$

$$= \frac{3}{2} \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^- \frac{x}{2} \right]_0^2$$

$$= \frac{3}{2} \left[\frac{2\pi}{2} \right]$$

$$= \frac{3\pi}{2}$$

Therefore, area bounded by the ellipse = $4 \times \frac{3\pi}{2} = 6\pi$ units

www.esaral.com

Å

Question 3:

Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0and x = 2 is

D. 4

Answer

The area bounded by the circle and the lines, x = 0 and x = 2, in the first quadrant is represented as

$$\therefore \text{ Area OAB} = \int_0^2 y \, dx$$
$$= \int_0^2 \sqrt{4 - x^2} \, dx$$
$$= \left[\frac{x}{2}\sqrt{4 - x^2} + \frac{4}{2}\sin^{-1}\frac{x}{2}\right]$$
$$= 2\left(\frac{\pi}{2}\right)$$
$$= \pi \text{ units}$$

Thus, the correct answer is A.

]0

Å

Question 4:

Area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3 is

A. 2 **B.** $\frac{9}{4}$ **C.** $\frac{9}{3}$ **D.** $\frac{9}{2}$

Answer

The area bounded by the curve, $y^2 = 4x$, y-axis, and y = 3 is represented as

Thus, the correct answer is B.