Class XII : Maths

Chapter 8 : Application Of Integrals

Questions and Solutions | Exercise 8.1 - NCERT Books

Question 1:

Find the area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
Answer

The given equation of the ellipse, $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, can be represented as

It can be observed that the ellipse is symmetrical about x-axis and y-axis.
\therefore Area bounded by ellipse $=4 \times$ Area of $O A B$

Area of $\mathrm{OAB}=\int_{0}^{4} y d x$
$=\int_{0}^{1} 3 \sqrt{1-\frac{x^{2}}{16}} d x$
$=\frac{3}{4} \int_{0}^{4} \sqrt{16-x^{2}} d x$
$=\frac{3}{4}\left[\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1} \frac{x}{4}\right]_{0}^{4}$
$=\frac{3}{4}\left[2 \sqrt{16-16}+8 \sin ^{-1}(1)-0-8 \sin ^{-1}(0)\right]$
$=\frac{3}{4}\left[\frac{8 \pi}{2}\right]$
$=\frac{3}{4}[4 \pi]$
$=3 \pi$
herefore, area bounded by the ellipse $=4 \times 3 \pi=12 \pi$ units

Question 2:

Find the area of the region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
Answer
The given equation of the ellipse can be represented as

$\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
$\Rightarrow y=3 \sqrt{1-\frac{x^{2}}{4}}$
It can be observed that the ellipse is symmetrical about x-axis and y-axis.
\therefore Area bounded by ellipse $=4 \times$ Area OAB

$$
\begin{aligned}
\therefore \text { Area of } \mathrm{OAB} & =\int_{0}^{2} y d x \\
& =\int_{0}^{2} 3 \sqrt{1-\frac{x^{2}}{4}} d x \quad \quad \text { Using (1)] } \\
& =\frac{3}{2} \int_{0}^{2} \sqrt{4-x^{2}} d x \\
& =\frac{3}{2}\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-} \frac{x}{2}\right]_{0}^{2} \\
& =\frac{3}{2}\left[\frac{2 \pi}{2}\right] \\
& =\frac{3 \pi}{2}
\end{aligned}
$$

Therefore, area bounded by the ellipse $=4 \times \frac{3 \pi}{2}=6 \pi$ units

Question 3:

Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is
A. $!$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer
The area bounded by the circle and the lines, $x=0$ and $x=2$, in the first quadrant is represented as

\therefore Area $\mathrm{OAB}=\int_{0}^{2} y d x$
$=\int_{0}^{2} \sqrt{4-x^{2}} d x$
$=\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2}$
$=2\left(\frac{\pi}{2}\right)$
$=\pi$ units
Thus, the correct answer is A.

Question 4:

Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$

Answer
The area bounded by the curve, $y^{2}=4 x, y$-axis, and $y=3$ is represented as

\therefore Area $\mathrm{OAB}=\int_{0}^{3} x d y$
$=\int_{0}^{3} \frac{y^{2}}{4} d y$
$=\frac{1}{4}\left[\frac{y^{3}}{3}\right]_{0}^{3}$

$$
=\frac{1}{12}(27)
$$

$$
=\frac{9}{4} \text { units }
$$

Thus, the correct answer is B.

