Questions and Solutions | Exercise 9.4 - NCERT Books

Question 1:

$\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x$

Answer
The given differential equation i.e., $\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x$ can be written as:
$\frac{d y}{d x}=\frac{x^{2}+y^{2}}{x^{2}+x y}$
Let $F(x, y)=\frac{x^{2}+y^{2}}{x^{2}+x y}$.
Now, $F(\lambda x, \lambda y)=\frac{(\lambda x)^{2}+(\lambda y)^{2}}{(\lambda x)^{2}+(\lambda x)(\lambda y)}=\frac{x^{2}+y^{2}}{x^{2}+x y}=\lambda^{0} \cdot F(x, y)$
This shows that equation (1) is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
Differentiating both sides with respect to x, we get:
$\frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of v and $\frac{d y}{d x}$ in equation (1), we get:

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{x^{2}+(v x)^{2}}{x^{2}+x(v x)} \\
& \Rightarrow v+x \frac{d v}{d x}=\frac{1+v^{2}}{1+v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{1+v^{2}}{1+v}-v=\frac{\left(1+v^{2}\right)-v(1+v)}{1+v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{1-v}{1+v} \\
& \Rightarrow\left(\frac{1+v}{1-v}\right)=d v=\frac{d x}{x} \\
& \Rightarrow\left(\frac{2-1+v}{1-v}\right) d v=\frac{d x}{x} \\
& \Rightarrow\left(\frac{2}{1-v}-1\right) d v=\frac{d x}{x}
\end{aligned}
$$

Integrating both sides, we get:

$$
\begin{aligned}
& -2 \log (1-v)-v=\log x-\log k \\
& \Rightarrow v=-2 \log (1-v)-\log x+\log k \\
& \Rightarrow v=\log \left[\frac{k}{x(1-v)^{2}}\right] \\
& \Rightarrow \frac{y}{x}=\log \left[\frac{k}{x\left(1-\frac{y}{x}\right)^{2}}\right] \\
& \Rightarrow \frac{y}{x}=\log \left[\frac{k x}{(x-y)^{2}}\right] \\
& \Rightarrow \frac{k x}{(x-y)^{2}}=e^{\frac{y}{x}} \\
& \Rightarrow(x-y)^{2}=k x e^{-\frac{y}{x}}
\end{aligned}
$$

This is the required solution of the given differential equation.

Question 2:
$y^{\prime}=\frac{x+y}{x}$
Answer
The given differential equation is:
$y^{\prime}=\frac{x+y}{x}$
$\Rightarrow \frac{d y}{d x}=\frac{x+y}{x}$
Let $F(x, y)=\frac{x+y}{x}$.
Now, $F(\lambda x, \lambda y)=\frac{\lambda x+\lambda y}{\lambda x}=\frac{x+y}{x}=\lambda^{0} F(x, y)$
Thus, the given equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
Differentiating both sides with respect to x, we get:
$\frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of y and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=\frac{x+v x}{x}$
$\Rightarrow v+x \frac{d v}{d x}=1+v$
$x \frac{d v}{d x}=1$
$\Rightarrow d v=\frac{d x}{x}$
Integrating both sides, we get:
$v=\log x+C$
$\Rightarrow \frac{y}{x}=\log x+\mathrm{C}$
$\Rightarrow y=x \log x+\mathrm{C} x$
This is the required solution of the given differential equation.

Question 3:

$(x-y) d y-(x+y) d x=0$

Answer

The given differential equation is:
$(x-y) d y-(x+y) d x=0$
$\Rightarrow \frac{d y}{d x}=\frac{x+y}{x-y}$
Let $F(x, y)=\frac{x+y}{x-y}$.
$\therefore F(\lambda x, \lambda y)=\frac{\lambda x+\lambda y}{\lambda x-\lambda y}=\frac{x+y}{x-y}=\lambda^{0} \cdot F(x, y)$
Thus, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of y and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=\frac{x+v x}{x-v x}=\frac{1+v}{1-v}$
$x \frac{d v}{d x}=\frac{1+v}{1-v}-v=\frac{1+v-v(1-v)}{1-v}$
$\Rightarrow x \frac{d v}{d x}=\frac{1+v^{2}}{1-v}$
$\Rightarrow \frac{1-v}{\left(1+v^{2}\right)} d v=\frac{d x}{x}$
$\Rightarrow\left(\frac{1}{1+v^{2}}-\frac{v}{1-v^{2}}\right) d v=\frac{d x}{x}$

Integrating both sides, we get:
$\tan ^{-1} v-\frac{1}{2} \log \left(1+v^{2}\right)=\log x+\mathrm{C}$
$\Rightarrow \tan ^{-1}\left(\frac{y}{x}\right)-\frac{1}{2} \log \left[1+\left(\frac{y}{x}\right)^{2}\right]=\log x+\mathrm{C}$
$\Rightarrow \tan ^{-1}\left(\frac{y}{x}\right)-\frac{1}{2} \log \left(\frac{x^{2}+y^{2}}{x^{2}}\right)=\log x+\mathrm{C}$
$\Rightarrow \tan ^{-1}\left(\frac{y}{x}\right)-\frac{1}{2}\left[\log \left(x^{2}+y^{2}\right)-\log x^{2}\right]=\log x+\mathrm{C}$
$\Rightarrow \tan ^{-1}\left(\frac{y}{x}\right)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+\mathrm{C}$
This is the required solution of the given differential equation.

Question 4:

$\left(x^{2}-y^{2}\right) d x+2 x y d y=0$

Answer

The given differential equation is:
$\left(x^{2}-y^{2}\right) d x+2 x y d y=0$
$\Rightarrow \frac{d y}{d x}=\frac{-\left(x^{2}-y^{2}\right)}{2 x y}$
Let $F(x, y)=\frac{-\left(x^{2}-y^{2}\right)}{2 x y}$.
$\therefore F(\lambda x, \lambda y)=\left[\frac{(\lambda x)^{2}-(\lambda y)^{2}}{2(\lambda x)(\lambda y)}\right]=\frac{-\left(x^{2}-y^{2}\right)}{2 x y}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of y and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=-\left[\frac{x^{2}-(v x)^{2}}{2 x \cdot(v x)}\right]$
$v+x \frac{d v}{d x}=\frac{v^{2}-1}{2 v}$
$\Rightarrow x \frac{d v}{d x}=\frac{v^{2}-1}{2 v}-v=\frac{v^{2}-1-2 v^{2}}{2 v}$
$\Rightarrow x \frac{d v}{d x}=-\frac{\left(1+v^{2}\right)}{2 v}$
$\Rightarrow \frac{2 v}{1+v^{2}} d v=-\frac{d x}{x}$
Integrating both sides, we get:
$\log \left(1+v^{2}\right)=-\log x+\log \mathrm{C}=\log \frac{\mathrm{C}}{x}$
$\Rightarrow 1+v^{2}=\frac{\mathrm{C}}{x}$
$\Rightarrow\left[1+\frac{y^{2}}{x^{2}}\right]=\frac{\mathrm{C}}{x}$
$\Rightarrow x^{2}+y^{2}=\mathrm{C} x$
This is the required solution of the given differential equation.

Question 5:
$x^{2} \frac{d y}{d x}-x^{2}-2 y^{2}+x y$
Answer
The given differential equation is:
$x^{2} \frac{d y}{d x}=x^{2}-2 y^{2}+x y$
$\frac{d y}{d x}=\frac{x^{2}-2 y^{2}+x y}{x^{2}}$
Let $F(x, y)=\frac{x^{2}-2 y^{2}+x y}{x^{2}}$.
$\therefore F(\lambda x, \lambda y)=\frac{(\lambda x)^{2}-2(\lambda y)^{2}+(\lambda x)(\lambda y)}{(\lambda x)^{2}}=\frac{x^{2}-2 y^{2}+x y}{x^{2}}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of y and $\frac{d y}{d x}$ in equation (1), we get:

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{x^{2}-2(v x)^{2}+x \cdot(v x)}{x^{2}} \\
& \Rightarrow v+x \frac{d v}{d x}=1-2 v^{2}+v \\
& \Rightarrow x \frac{d v}{d x}=1-2 v^{2} \\
& \Rightarrow \frac{d v}{1-2 v^{2}}=\frac{d x}{x} \\
& \Rightarrow \frac{1}{2} \cdot \frac{d v}{\frac{1}{2}-v^{2}}=\frac{d x}{x} \\
& \Rightarrow \frac{1}{2} \cdot\left[\frac{d v}{\left(\frac{1}{\sqrt{2}}\right)^{2}-v^{2}}\right]=\frac{d x}{x}
\end{aligned}
$$

Integrating both sides, we get:

$$
\begin{aligned}
& \frac{1}{2} \cdot \frac{1}{2 \times \frac{1}{\sqrt{2}}} \log \left|\frac{\frac{1}{\sqrt{2}}+v}{\frac{1}{\sqrt{2}}-v}\right|=\log |x|+\mathrm{C} \\
& \Rightarrow \frac{1}{2 \sqrt{2}} \log \left|\frac{\frac{1}{\sqrt{2}}+\frac{y}{x}}{\frac{1}{\sqrt{2}}-\frac{y}{x}}\right|=\log |x|+\mathrm{C} \\
& \Rightarrow \frac{1}{2 \sqrt{2}} \log \left|\frac{x+\sqrt{2} y}{x-\sqrt{2} y}\right|=\log |x|+\mathrm{C}
\end{aligned}
$$

This is the required solution for the given differential equation.

Question 6:

$x d y-y d x=\sqrt{x^{2}+y^{2}} d x$
Answer
$x d y-y d x=\sqrt{x^{2}+y^{2}} d x$
$\Rightarrow x d y=\left[y+\sqrt{x^{2}+y^{2}}\right] d x$
$\frac{d y}{d x}=\frac{y+\sqrt{x^{2}+y^{2}}}{x^{2}}$
Let $F(x, y)=\frac{y+\sqrt{x^{2}+y^{2}}}{x^{2}}$.
$\therefore F(\lambda x, \lambda y)=\frac{\lambda x+\sqrt{(\lambda x)^{2}+(\lambda y)^{2}}}{\lambda x}=\frac{y+\sqrt{x^{2}+y^{2}}}{x}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$

Substituting the values of v and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=\frac{v x+\sqrt{x^{2}+(v x)^{2}}}{x}$
$\Rightarrow v+x \frac{d v}{d x}=v+\sqrt{1+v^{2}}$
$\Rightarrow \frac{d v}{\sqrt{1+v^{2}}}=\frac{d x}{x}$
Integrating both sides, we get:
$\log \left|v+\sqrt{1+v^{2}}\right|=\log |x|+\log \mathrm{C}$
$\Rightarrow \log \left|\frac{y}{x}+\sqrt{1+\frac{y^{2}}{x^{2}}}\right|=\log |\mathrm{C} x|$
$\Rightarrow \log \left|\frac{y+\sqrt{x^{2}+y^{2}}}{x}\right|=\log |\mathrm{C} x|$
$\Rightarrow y+\sqrt{x^{2}+y^{2}}=\mathrm{C} x^{2}$
This is the required solution of the given differential equation.

Question 7:

$\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y d x=\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x d y$
Answer
The given differential equation is:

$$
\begin{align*}
& \left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y d x=\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x d y \\
& \frac{d y}{d x}=\frac{\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y}{\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x} \tag{1}\\
& \text { Let } F(x, y)=\frac{\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y}{\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x} \text {. } \\
& \therefore F(\lambda x, \lambda y)=\frac{\left\{\lambda x \cos \left(\frac{\lambda y}{\lambda x}\right)+\lambda y \sin \left(\frac{\lambda y}{\lambda x}\right)\right\} \lambda y}{\left\{\lambda y \sin \left(\frac{\lambda y}{\lambda x}\right)-\lambda x \sin \left(\frac{\lambda y}{\lambda x}\right)\right\} \lambda x} \\
& =\frac{\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y}{\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x} \\
& =\lambda^{0} \cdot F(x, y)
\end{align*}
$$

Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d y}{d x}=v+x=\frac{d v}{d x}$
Substituting the values of y and $\frac{d y}{d x}$ in equation (1), we get:

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{(x \cos v+v x \sin v) \cdot v x}{(v x \sin v-x \cos v) \cdot x} \\
& \Rightarrow v+x \frac{d v}{d x}=\frac{v \cos v+v^{2} \sin v}{v \sin v-\cos v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{v \cos v+v^{2} \sin v}{v \sin v-\cos v}-v \\
& \Rightarrow x \frac{d v}{d x}=\frac{v \cos v+v^{2} \sin v-v^{2} \sin v+v \cos v}{v \sin v-\cos v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{2 v \cos v}{v \sin v-\cos v} \\
& \Rightarrow\left[\frac{v \sin v-\cos v}{v \cos v}\right] d v=\frac{2 d x}{x} \\
& \Rightarrow\left(\tan v-\frac{1}{v}\right) d v=\frac{2 d x}{x}
\end{aligned}
$$

Integrating both sides, we get:
$\log (\sec v)-\log v=2 \log x+\log C$
$\Rightarrow \log \left(\frac{\sec v}{v}\right)=\log \left(\mathrm{C} x^{2}\right)$
$\Rightarrow\left(\frac{\sec v}{v}\right)=\mathrm{Cx}^{2}$
$\Rightarrow \sec v=\mathrm{C}^{2} v$
$\Rightarrow \sec \left(\frac{y}{x}\right)=\mathrm{C} \cdot x^{2} \cdot \frac{y}{x}$
$\Rightarrow \sec \left(\frac{y}{x}\right)=$ C $x y$
$\Rightarrow \cos \left(\frac{y}{x}\right)=\frac{1}{\mathrm{C} x y}=\frac{1}{\mathrm{C}} \cdot \frac{1}{x y}$
$\Rightarrow x y \cos \left(\frac{y}{x}\right)=k \quad\left(k=\frac{1}{\mathrm{C}}\right)$
This is the required solution of the given differential equation.

Question 8:
$x \frac{d y}{d x}-y+x \sin \left(\frac{y}{x}\right)=0$
Answer
$x \frac{d y}{d x}-y+x \sin \left(\frac{y}{x}\right)=0$
$\Rightarrow x \frac{d y}{d x}=y-x \sin \left(\frac{y}{x}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{y-x \sin \left(\frac{y}{x}\right)}{x}$
Let $F(x, y)=\frac{y-x \sin \left(\frac{y}{x}\right)}{x}$.
$\therefore F(\lambda x, \lambda y)=\frac{\lambda y-\lambda x \sin \left(\frac{\lambda y}{\lambda x}\right)}{\lambda x}=\frac{y-x \sin \left(\frac{y}{x}\right)}{x}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of y and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=\frac{v x-x \sin v}{x}$
$\Rightarrow v+x \frac{d v}{d x}=v-\sin v$
$\Rightarrow-\frac{d v}{\sin v}=\frac{d x}{x}$
$\Rightarrow \operatorname{cosec} v d v=-\frac{d x}{x}$

Integrating both sides, we get:
$\log |\operatorname{cosec} v-\cot v|=-\log x+\log C=\log \frac{C}{x}$
$\Rightarrow \operatorname{cosec}\left(\frac{y}{x}\right)-\cot \left(\frac{y}{x}\right)=\frac{\mathrm{C}}{x}$
$\Rightarrow \frac{1}{\sin \left(\frac{y}{x}\right)}-\frac{\cos \left(\frac{y}{x}\right)}{\sin \left(\frac{y}{x}\right)}=\frac{\mathrm{C}}{x}$
$\Rightarrow x\left[1-\cos \left(\frac{y}{x}\right)\right]=\mathrm{C} \sin \left(\frac{y}{x}\right)$
This is the required solution of the given differential equation.

Question 9:

$y d x+x \log \left(\frac{y}{x}\right) d y-2 x d y=0$

Answer

$$
\begin{align*}
& y d x+x \log \left(\frac{y}{x}\right) d y-2 x d y=0 \\
& \Rightarrow y d x=\left[2 x-x \log \left(\frac{y}{x}\right)\right] d y \\
& \Rightarrow \frac{d y}{d x}=\frac{y}{2 x-x \log \left(\frac{y}{x}\right)} \tag{1}
\end{align*}
$$

Let $F(x, y)=\frac{y}{2 x-x \log \left(\frac{y}{x}\right)}$.
$\therefore F(\lambda x, \lambda y)=\frac{\lambda y}{2(\lambda x)-(\lambda x) \log \left(\frac{\lambda y}{\lambda x}\right)}=\frac{y}{2 x-\log \left(\frac{y}{x}\right)}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of y and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=\frac{v x}{2 x-x \log v}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{v}{2-\log v}$
$\Rightarrow x \frac{d v}{d x}=\frac{v}{2-\log v}-v$
$\Rightarrow x \frac{d v}{d x}=\frac{v-2 v+v \log v}{2-\log v}$
$\Rightarrow x \frac{d v}{d x}=\frac{v \log v-v}{2-\log v}$
$\Rightarrow \frac{2-\log v}{v(\log v-1)} d v=\frac{d x}{x}$
$\Rightarrow\left[\frac{1+(1-\log v)}{v(\log v-1)}\right] d v=\frac{d x}{x}$
$\Rightarrow\left[\frac{1}{v(\log v-1)}-\frac{1}{v}\right] d v=\frac{d x}{x}$
Integrating both sides, we get:
$\int \frac{1}{v(\log v-1)} d v-\int \frac{1}{v} d v=\int \frac{1}{x} d x$
$\Rightarrow \int \frac{d v}{v(\log v-1)}-\log v=\log x+\log \mathrm{C}$

$$
\begin{aligned}
& \Rightarrow \text { Let } \log v-1=t \\
& \Rightarrow \frac{d}{d v}(\log v-1)=\frac{d t}{d v} \\
& \Rightarrow \frac{1}{v}=\frac{d t}{d v} \\
& \Rightarrow \frac{d v}{v}=d t
\end{aligned}
$$

Therefore, equation (1) becomes:

$$
\begin{aligned}
& \Rightarrow \int \frac{d t}{t}-\log v=\log x+\log \mathrm{C} \\
& \Rightarrow \log t-\log \left(\frac{y}{x}\right)=\log (\mathrm{C} x) \\
& \Rightarrow \log \left[\log \left(\frac{y}{x}\right)-1\right]-\log \left(\frac{y}{x}\right)=\log (\mathrm{C} x) \\
& \Rightarrow \log \left[\frac{\log \left(\frac{y}{x}\right)-1}{\frac{y}{x}}\right]=\log (\mathrm{C} x) \\
& \Rightarrow \frac{x}{y}\left[\log \left(\frac{y}{x}\right)-1\right]=\mathrm{C} x \\
& \Rightarrow \log \left(\frac{y}{x}\right)-1=\mathrm{C} y
\end{aligned}
$$

This is the required solution of the given differential equation.

Question 10:

$\left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0$
Answer

$$
\begin{aligned}
& \left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0 \\
& \Rightarrow\left(1+e^{\frac{x}{y}}\right) d x=-e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y
\end{aligned}
$$

$\Rightarrow \frac{d x}{d y}=\frac{-e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)}{1+e^{\frac{x}{y}}}$
Let $F(x, y)=\frac{-e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)}{1+e^{\frac{x}{y}}}$.
$\therefore F(\lambda x, \lambda y)=\frac{-e^{\frac{\lambda x}{\lambda y}}\left(1-\frac{\lambda x}{\lambda y}\right)}{1+e^{\frac{\lambda x}{\lambda y}}}=\frac{-e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)}{1+e^{\frac{x}{y}}}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:

$$
\begin{aligned}
& x=v y \\
& \Rightarrow \frac{d}{d y}(x)=\frac{d}{d y}(v y) \\
& \Rightarrow \frac{d x}{d y}=v+y \frac{d v}{d y}
\end{aligned}
$$

Substituting the values of x and $\frac{d x}{d y}$ in equation (1), we get:

$$
\begin{aligned}
& v+y \frac{d v}{d y}=\frac{-e^{v}(1-v)}{1+e^{v}} \\
& \Rightarrow y \frac{d v}{d y}=\frac{-e^{v}+v e^{v}}{1+e^{v}}-v \\
& \Rightarrow y \frac{d v}{d y}=\frac{-e^{v}+v e^{v}-v-v e^{v}}{1+e^{v}} \\
& \Rightarrow y \frac{d v}{d y}=-\left[\frac{v+e^{v}}{1+e^{v}}\right] \\
& \Rightarrow\left[\frac{1+e^{v}}{v+e^{v}}\right] d v=-\frac{d y}{y}
\end{aligned}
$$

Integrating both sides, we get:
$\Rightarrow \log \left(v+e^{v}\right)=-\log y+\log \mathrm{C}=\log \left(\frac{\mathrm{C}}{y}\right)$
$\Rightarrow\left[\frac{x}{y}+e^{\frac{x}{y}}\right]=\frac{\mathrm{C}}{y}$
$\Rightarrow x+y e^{\frac{x}{y}}=\mathrm{C}$
This is the required solution of the given differential equation.

Question 11:

$(x+y) d y+(x-y) d y=0 ; y=1$ when $x=1$

Answer

$(x+y) d y+(x-y) d x=0$
$\Rightarrow(x+y) d y=-(x-y) d x$
$\Rightarrow \frac{d y}{d x}=\frac{-(x-y)}{x+y}$
Let $F(x, y)=\frac{-(x-y)}{x+y}$.
$\therefore F(\lambda x, \lambda y)=\frac{-(\lambda x-\lambda y)}{\lambda x-\lambda y}=\frac{-(x-y)}{x+y}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of y and $\frac{d y}{d x}$ in equation (1), we get:

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{-(x-v x)}{x+v x} \\
& \Rightarrow v+x \frac{d v}{d x}=\frac{v-1}{v+1} \\
& \Rightarrow x \frac{d v}{d x}=\frac{v-1}{v+1}-v=\frac{v-1-v(v+1)}{v+1} \\
& \Rightarrow x \frac{d v}{d x}=\frac{v-1-v^{2}-v}{v+1}=\frac{-\left(1+v^{2}\right)}{v+1} \\
& \Rightarrow \frac{(v+1)}{1+v^{2}} d v=-\frac{d x}{x} \\
& \Rightarrow\left[\frac{v}{1+v^{2}}+\frac{1}{1+v^{2}}\right] d v=-\frac{d x}{x}
\end{aligned}
$$

Integrating both sides, we get:
$\frac{1}{2} \log \left(1+v^{2}\right)+\tan ^{-1} v=-\log x+k$
$\Rightarrow \log \left(1+v^{2}\right)+2 \tan ^{-1} v=-2 \log x+2 k$
$\Rightarrow \log \left[\left(1+v^{2}\right) \cdot x^{2}\right]+2 \tan ^{-1} v=2 k$
$\Rightarrow \log \left[\left(1+\frac{y^{2}}{x^{2}}\right) \cdot x^{2}\right]+2 \tan ^{-1} \frac{y}{x}=2 k$
$\Rightarrow \log \left(x^{2}+y^{2}\right)+2 \tan ^{-1} \frac{y}{x}=2 k$
Now, $y=1$ at $x=1$.
$\Rightarrow \log 2+2 \tan ^{-1} 1=2 k$
$\Rightarrow \log 2+2 \times \frac{\pi}{4}=2 k$
$\Rightarrow \frac{\pi}{2}+\log 2=2 k$
Substituting the value of $2 k$ in equation (2), we get:
$\log \left(x^{2}+y^{2}\right)+2 \tan ^{-1}\left(\frac{y}{x}\right)=\frac{\pi}{2}+\log 2$
This is the required solution of the given differential equation.

Question 12:

$x^{2} d y+\left(x y+y^{2}\right) d x=0 ; y=1$ when $x=1$

Answer

$x^{2} d y+\left(x y+y^{2}\right) d x=0$
$\Rightarrow x^{2} d y=-\left(x y+y^{2}\right) d x$
$\Rightarrow \frac{d y}{d x}=\frac{-\left(x y+y^{2}\right)}{x^{2}}$
Let $F(x, y)=\frac{-\left(x y+y^{2}\right)}{x^{2}}$.
$\therefore F(\lambda x, \lambda y)=\frac{\left[\lambda x \cdot \lambda y+(\lambda y)^{2}\right]}{(\lambda x)^{2}}=\frac{-\left(x y+y^{2}\right)}{x^{2}}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of y and $\frac{d y}{d x}$ in equation (1), we get:

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{-\left[x \cdot v x+(v x)^{2}\right]}{x^{2}}=-v-v^{2} \\
& \Rightarrow x \frac{d v}{d x}=-v^{2}-2 v=-v(v+2) \\
& \Rightarrow \frac{d v}{v(v+2)}=-\frac{d x}{x} \\
& \Rightarrow \frac{1}{2}\left[\frac{(v+2)-v}{v(v+2)}\right] d v=-\frac{d x}{x} \\
& \Rightarrow \frac{1}{2}\left[\frac{1}{v}-\frac{1}{v+2}\right] d v=-\frac{d x}{x}
\end{aligned}
$$

Integrating both sides, we get:
$\frac{1}{2}[\log v-\log (v+2)]=-\log x+\log C$
$\Rightarrow \frac{1}{2} \log \left(\frac{v}{v+2}\right)=\log \frac{\mathrm{C}}{x}$
$\Rightarrow \frac{v}{v+2}=\left(\frac{\mathrm{C}}{x}\right)^{2}$
$\Rightarrow \frac{\frac{y}{x}}{\frac{y}{x}+2}=\left(\frac{\mathrm{C}}{x}\right)^{2}$
$\Rightarrow \frac{y}{y+2 x}=\frac{\mathrm{C}^{2}}{x^{2}}$
$\Rightarrow \frac{x^{2} y}{y+2 x}=\mathrm{C}^{2}$
Now, $y=1$ at $x=1$.
$\Rightarrow \frac{1}{1+2}=\mathrm{C}^{2}$
$\Rightarrow \mathrm{C}^{2}=\frac{1}{3}$

Substituting $\mathrm{C}^{2}=\frac{1}{3}$ in equation (2), we get:
$\frac{x^{2} y}{y+2 x}=\frac{1}{3}$
$\Rightarrow y+2 x=3 x^{2} y$
This is the required solution of the given differential equation.

Question 13:

$\left[x \sin ^{2}\left(\frac{x}{y}-y\right)\right] d x+x d y=0 ; y \frac{\pi}{4}$ when $x=1$

Answer
$\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right] d x+x d y=0$
$\Rightarrow \frac{d y}{d x}=\frac{-\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right]}{x}$
Let $F(x, y)=\frac{-\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right]}{x}$.
$\therefore F(\lambda x, \lambda y)=\frac{-\left[\lambda x \cdot \sin ^{2}\left(\frac{\lambda x}{\lambda y}\right)-\lambda y\right]}{\lambda x}=\frac{-\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right]}{x}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve this differential equation, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x=\frac{d v}{d x}$
Substituting the values of y and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=\frac{-\left[x \sin ^{2} v-v x\right]}{x}$
$\Rightarrow v+x \frac{d v}{d x}=-\left[\sin ^{2} v-v\right]=v-\sin ^{2} v$
$\Rightarrow x \frac{d v}{d x}=-\sin ^{2} v$
$\Rightarrow \frac{d v}{\sin ^{2} v}=-\frac{d x}{d x}$
$\Rightarrow \operatorname{cosec}^{2} v d v=-\frac{d x}{x}$
Integrating both sides, we get:
$-\cot v=-\log |x|-\mathrm{C}$
$\Rightarrow \cot v=\log |x|+\mathrm{C}$
$\Rightarrow \cot \left(\frac{y}{x}\right)=\log |x|+\log \mathrm{C}$
$\Rightarrow \cot \left(\frac{y}{x}\right)=\log |C x|$
Now, $y=\frac{\pi}{4}$ at $x=1$.
$\Rightarrow \cot \left(\frac{\pi}{4}\right)=\log |\mathrm{C}|$
$\Rightarrow 1=\log \mathrm{C}$
$\Rightarrow \mathrm{C}=e^{1}=e$
Substituting $\mathrm{C}=e$ in equation (2), we get:
$\cot \left(\frac{y}{x}\right)=\log |e x|$
This is the required solution of the given differential equation.

Question 14:

$\frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec}\left(\frac{y}{x}\right)=0 ; y=0$ when $x=1$
Answer

$$
\begin{align*}
& \frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec}\left(\frac{y}{x}\right)=0 \\
& \Rightarrow \frac{d y}{d x}=\frac{y}{x}-\operatorname{cosec}\left(\frac{y}{x}\right) \tag{1}
\end{align*}
$$

Let $F(x, y)=\frac{y}{x}-\operatorname{cosec}\left(\frac{y}{x}\right)$.
$\therefore F(\lambda x, \lambda y)=\frac{\lambda y}{\lambda x}-\operatorname{cosec}\left(\frac{\lambda y}{\lambda x}\right)$
$\Rightarrow F(\lambda x, \lambda y)=\frac{y}{x}-\operatorname{cosec}\left(\frac{y}{x}\right)=F(x, y)=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.

To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$

Substituting the values of y and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=v-\operatorname{cosec} v$
$\Rightarrow-\frac{d v}{\operatorname{cosec} v}=-\frac{d x}{x}$
$\Rightarrow-\sin v d v=\frac{d x}{x}$
Integrating both sides, we get:
$\cos v=\log x+\log C=\log |C x|$
$\Rightarrow \cos \left(\frac{y}{x}\right)=\log |C x|$
This is the required solution of the given differential equation.
Now, $y=0$ at $x=1$.
$\Rightarrow \cos (0)=\log \mathrm{C}$
$\Rightarrow 1=\log C$
$\Rightarrow \mathrm{C}=e^{1}=e$
Substituting $C=e$ in equation (2), we get:
$\cos \left(\frac{y}{x}\right)=\log |(e x)|$
This is the required solution of the given differential equation.

Question 15:

$2 x y+y^{2}-2 x^{2} \frac{d y}{d x}=0 ; y=2$ when $x=1$
Answer
$2 x y+y^{2}-2 x^{2} \frac{d y}{d x}=0$
$\Rightarrow 2 x^{2} \frac{d y}{d x}=2 x y+y^{2}$
$\Rightarrow \frac{d y}{d x}=\frac{2 x y+y^{2}}{2 x^{2}}$
Let $F(x, y)=\frac{2 x y+y^{2}}{2 x^{2}}$.
$\therefore F(\lambda x, \lambda y)=\frac{2(\lambda x)(\lambda y)+(\lambda y)^{2}}{2(\lambda x)^{2}}=\frac{2 x y+y^{2}}{2 x^{2}}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
$y=v x$
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$

Substituting the value of y and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=\frac{2 x(v x)+(v x)^{2}}{2 x^{2}}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{2 v+v^{2}}{2}$
$\Rightarrow v+x \frac{d v}{d x}=v+\frac{v^{2}}{2}$
$\Rightarrow \frac{2}{v^{2}} d v=\frac{d x}{x}$
Integrating both sides, we get:
$2 \cdot \frac{v^{-2+1}}{-2+1}=\log |x|+\mathrm{C}$
$\Rightarrow-\frac{2}{v}=\log |x|+\mathrm{C}$
$\Rightarrow-\frac{2}{\frac{y}{x}}=\log |x|+\mathrm{C}$
$\Rightarrow-\frac{2 x}{y}=\log |x|+\mathrm{C}$
Now, $y=2$ at $x=1$.
$\Rightarrow-1=\log (1)+C$
$\Rightarrow \mathrm{C}=-1$
Substituting $C=-1$ in equation (2), we get:
$-\frac{2 x}{y}=\log |x|-1$
$\Rightarrow \frac{2 x}{y}=1-\log |x|$
$\Rightarrow y=\frac{2 x}{1-\log |x|},(x \neq 0, x \neq e)$
This is the required solution of the given differential equation.

Question 16:

A homogeneous differential equation of the form $\frac{d x}{d y}=h\left(\frac{x}{y}\right)$ can be solved by making the
substitution substitution
A. $y=v x$
B. $v=y x$
C. $x=v y$
D. $x=v$

Answer

For solving the homogeneous equation of the form $\frac{d x}{d y}=h\left(\frac{x}{y}\right)$, we need to make the substitution as $x=v y$.
Hence, the correct answer is C.

Question 17:

Which of the following is a homogeneous differential equation?
A. $(4 x+6 y+5) d y-(3 y+2 x+4) d x=0$
B. $(x y) d x-\left(x^{3}+y^{3}\right) d y=0$
C. $\left(x^{3}+2 y^{2}\right) d x+2 x y d y=0$
D. $y^{2} d x+\left(x^{2}-x y^{2}-y^{2}\right) d y=0$

Answer
Function $\mathrm{F}(x, y)$ is said to be the homogenous function of degree n, if $F(\lambda x, \lambda y)=\lambda^{n} F(x, y)$ for any non-zero constant (λ).
Consider the equation given in alternativeD:
$y^{2} d x+\left(x^{2}-x y-y^{2}\right) d y=0$
$\Rightarrow \frac{d y}{d x}=\frac{-y^{2}}{x^{2}-x y-y^{2}}=\frac{y^{2}}{y^{2}+x y-x^{2}}$
Let $F(x, y)=\frac{y^{2}}{y^{2}+x y-x^{2}}$.

$$
\begin{aligned}
\Rightarrow F(\lambda x, \lambda y) & =\frac{(\lambda y)^{2}}{(\lambda y)^{2}+(\lambda x)(\lambda y)-(\lambda x)^{2}} \\
& =\frac{\lambda^{2} y^{2}}{\lambda^{2}\left(y^{2}+x y-x^{2}\right)} \\
& =\lambda^{0}\left(\frac{y^{2}}{y^{2}+x y-x^{2}}\right) \\
& =\lambda^{0} \cdot F(x, y)
\end{aligned}
$$

Hence, the differential equation given in alternative \mathbf{D} is a homogenous equation.

