Class XII : Maths
 Chapter 9 : Differential Equations

Questions and Solutions | Exercise 9.2 - NCERT Books

Question 1:

$y=e^{x}+1 \quad: \quad y^{\prime \prime}-y^{\prime}=0$
Answer
$y=e^{x}+1$
Differentiating both sides of this equation with respect to x, we get:
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{x}+1\right)$
$\Rightarrow y^{\prime}=e^{x}$
Now, differentiating equation (1) with respect to x, we get:
$\frac{d}{d x}\left(y^{\prime}\right)=\frac{d}{d x}\left(e^{x}\right)$
$\Rightarrow y^{\prime \prime}=e^{x}$
Substituting the values of y^{\prime} and $y^{\prime \prime}$ in the given differential equation, we get the L.H.S. as:
$y^{\prime \prime}-y^{\prime}=e^{x}-e^{x}=0=$ R.H.S.
Thus, the given function is the solution of the corresponding differential equation.

Question 2:

$y=x^{2}+2 x+C \quad: y^{\prime}-2 x-2=0$
Answer
$y=x^{2}+2 x+C$
Differentiating both sides of this equation with respect to x, we get:
$y^{\prime}=\frac{d}{d x}\left(x^{2}+2 x+\mathrm{C}\right)$
$\Rightarrow y^{\prime}=2 x+2$
Substituting the value of y^{\prime} in the given differential equation, we get:
L.H.S. $=y^{\prime}-2 x-2=2 x+2-2 x-2=0=$ R.H.S.

Hence, the given function is the solution of the corresponding differential equation.

Question 3:

$y=\cos x+C \quad: y^{\prime}+\sin x=0$
Answer
$y=\cos x+\mathrm{C}$
Differentiating both sides of this equation with respect to x, we get:
$y^{\prime}=\frac{d}{d x}(\cos x+\mathrm{C})$
$\Rightarrow y^{\prime}=-\sin x$
Substituting the value of y^{\prime} in the given differential equation, we get:
L.H.S. $=y^{\prime}+\sin x=-\sin x+\sin x=0=$ R.H.S.

Hence, the given function is the solution of the corresponding differential equation.

Question 4:

$y=\sqrt{1+x^{2}} \quad: \quad y^{\prime}=\frac{x y}{1+x^{2}}$
Answer
$y=\sqrt{1+x^{2}}$
Differentiating both sides of the equation with respect to x, we get:

$$
\begin{aligned}
& y^{\prime}=\frac{d}{d x}\left(\sqrt{1+x^{2}}\right) \\
& y^{\prime}=\frac{1}{2 \sqrt{1+x^{2}}} \cdot \frac{d}{d x}\left(1+x^{2}\right) \\
& y^{\prime}=\frac{2 x}{2 \sqrt{1+x^{2}}} \\
& y^{\prime}=\frac{x}{\sqrt{1+x^{2}}} \\
& \Rightarrow y^{\prime}=\frac{x}{1+x^{2}} \times \sqrt{1+x^{2}} \\
& \Rightarrow y^{\prime}=\frac{x}{1+x^{2}} \cdot y \\
& \Rightarrow y^{\prime}=\frac{x y}{1+x^{2}} \\
& \therefore \text { L.H.S. }=\text { R.H.S. }
\end{aligned}
$$

Hence, the given function is the solution of the corresponding differential equation.

Question 5:

$y=\mathrm{A} x \quad: \quad x y^{\prime}=y(x \neq 0)$
Answer
$y=\mathrm{A} x$
Differentiating both sides with respect to x, we get:
$y^{\prime}=\frac{d}{d x}(\mathrm{~A} x)$
$\Rightarrow y^{\prime}=\mathrm{A}$
Substituting the value of y^{\prime} in the given differential equation, we get:
L.H.S. $=x y^{\prime}=x \cdot \mathrm{~A}=\mathrm{A} x=y=$ R.H.S.

Hence, the given function is the solution of the corresponding differential equation.

Question 6:

$y=x \sin x \quad: x y^{\prime}=y+x \sqrt{x^{2}-y^{2}}(x \neq 0$ and $x>y$ or $x<-y)$
Answer
$y=x \sin x$
Differentiating both sides of this equation with respect to x, we get:
$y^{\prime}=\frac{d}{d x}(x \sin x)$
$\Rightarrow y^{\prime}=\sin x \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}(\sin x)$
$\Rightarrow y^{\prime}=\sin x+x \cos x$
Substituting the value of y^{\prime} in the given differential equation, we get:

$$
\begin{aligned}
\text { L.H.S. }=x y^{\prime} & =x(\sin x+x \cos x) \\
& =x \sin x+x^{2} \cos x \\
= & y+x^{2} \cdot \sqrt{1-\sin ^{2} x} \\
= & y+x^{2} \sqrt{1-\left(\frac{y}{x}\right)^{2}} \\
= & y+x \sqrt{y^{2}-x^{2}} \\
= & \text { R.H.S. }
\end{aligned}
$$

Hence, the given function is the solution of the corresponding differential equation.

Question 7:

$x y=\log y+\mathrm{C} \quad: y^{\prime}=\frac{y^{2}}{1-x y}(x y \neq 1)$
Answer
$x y=\log y+\mathrm{C}$
Differentiating both sides of this equation with respect to x, we get:
$\frac{d}{d x}(x y)=\frac{d}{d x}(\log y)$
$\Rightarrow y \cdot \frac{d}{d x}(x)+x \cdot \frac{d y}{d x}=\frac{1}{y} \frac{d y}{d x}$
$\Rightarrow y+x y^{\prime}=\frac{1}{y} y^{\prime}$
$\Rightarrow y^{2}+x y y^{\prime}=y^{\prime}$
$\Rightarrow(x y-1) y^{\prime}=-y^{2}$
$\Rightarrow y^{\prime}=\frac{y^{2}}{1-x y}$
\therefore L.H.S. $=$ R.H.S.
Hence, the given function is the solution of the corresponding differential equation.

Question 8:

$y-\cos y=x \quad:(y \sin y+\cos y+x) y^{\prime}=y$

Answer

$$
\begin{equation*}
y-\cos y=x \tag{1}
\end{equation*}
$$

Differentiating both sides of the equation with respect to x, we get:
$\frac{d y}{d x}-\frac{d}{d x}(\cos y)=\frac{d}{d x}(x)$
$\Rightarrow y^{\prime}+\sin y \cdot y^{\prime}=1$
$\Rightarrow y^{\prime}(1+\sin y)=1$
$\Rightarrow y^{\prime}=\frac{1}{1+\sin y}$
Substituting the value of y^{\prime} in equation (1), we get:

$$
\begin{aligned}
\text { L.H.S. } & =(y \sin y+\cos y+x) y^{\prime} \\
& =(y \sin y+\cos y+y-\cos y) \times \frac{1}{1+\sin y} \\
& =y(1+\sin y) \cdot \frac{1}{1+\sin y} \\
& =y \\
& =\text { R.H.S. }
\end{aligned}
$$

Hence, the given function is the solution of the corresponding differential equation.

Question 9:

$x+y=\tan ^{-1} y \quad: y^{2} y^{\prime}+y^{2}+1=0$
Answer
$x+y=\tan ^{-1} y$
Differentiating both sides of this equation with respect to x, we get:
$\frac{d}{d x}(x+y)=\frac{d}{d x}\left(\tan ^{-1} y\right)$
$\Rightarrow 1+y^{\prime}=\left[\frac{1}{1+y^{2}}\right] y^{\prime}$
$\Rightarrow y^{\prime}\left[\frac{1}{1+y^{2}}-1\right]=1$
$\Rightarrow y^{\prime}\left[\frac{1-\left(1+y^{2}\right)}{1+y^{2}}\right]=1$
$\Rightarrow y^{\prime}\left[\frac{-y^{2}}{1+y^{2}}\right]=1$
$\Rightarrow y^{\prime}=\frac{-\left(1+y^{2}\right)}{y^{2}}$
Substituting the value of y^{\prime} in the given differential equation, we get:

$$
\begin{aligned}
\text { L.H.S. }=y^{2} y^{\prime}+y^{2}+1 & =y^{2}\left[\frac{-\left(1+y^{2}\right)}{y^{2}}\right]+y^{2}+1 \\
& =-1-y^{2}+y^{2}+1 \\
& =0 \\
& =\text { R.H.S. }
\end{aligned}
$$

Hence, the given function is the solution of the corresponding differential equation.

Question 10:

$y=\sqrt{a^{2}-x^{2}} x \in(-a, a) \quad: x+y \frac{d y}{d x}=0(y \neq 0)$
Answer
$y=\sqrt{a^{2}-x^{2}}$
Differentiating both sides of this equation with respect to x, we get:

$$
\begin{aligned}
\frac{d y}{d x}= & \frac{d}{d x}\left(\sqrt{a^{2}-x^{2}}\right) \\
\Rightarrow \frac{d y}{d x} & =\frac{1}{2 \sqrt{a^{2}-x^{2}}} \cdot \frac{d}{d x}\left(a^{2}-x^{2}\right) \\
& =\frac{1}{2 \sqrt{a^{2}-x^{2}}}(-2 x) \\
& =\frac{-x}{\sqrt{a^{2}-x^{2}}}
\end{aligned}
$$

Substituting the value of $\frac{d y}{d x}$ in the given differential equation, we get:

$$
\begin{aligned}
\text { L.H.S. }=x+y \frac{d y}{d x} & =x+\sqrt{a^{2}-x^{2}} \times \frac{-x}{\sqrt{a^{2}-x^{2}}} \\
& =x-x \\
& =0 \\
& =\text { R.H.S. }
\end{aligned}
$$

Hence, the given function is the solution of the corresponding differential equation.

Question 11:

The numbers of arbitrary constants in the general solution of a differential equation of fourth order are:

$$
\text { (A) } 0 \text { (B) } 2 \text { (C) } 3 \text { (D) } 4
$$

Answer
We know that the number of constants in the general solution of a differential equation of order n is equal to its order.

Therefore, the number of constants in the general equation of fourth order differential equation is four.

Hence, the correct answer is D.

Question 12:

The numbers of arbitrary constants in the particular solution of a differential equation of third order are:
(A) 3 (B) 2 (C) 1 (D) 0

Answer
In a particular solution of a differential equation, there are no arbitrary constants. Hence, the correct answer is D.

