Class XII : Maths
Chapter 9 : Differential Equations

Questions and Solutions | Exercise 9.3 - NCERT Books

Question 1:

$\frac{d y}{d x}=\frac{1-\cos x}{1+\cos x}$
Answer
The given differential equation is:
$\frac{d y}{d x}=\frac{1-\cos x}{1+\cos x}$
$\Rightarrow \frac{d y}{d x}=\frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}=\tan ^{2} \frac{x}{2}$
$\Rightarrow \frac{d y}{d x}=\left(\sec ^{2} \frac{x}{2}-1\right)$
Separating the variables, we get:
$d y=\left(\sec ^{2} \frac{x}{2}-1\right) d x$
Now, integrating both sides of this equation, we get:
$\int d y=\int\left(\sec ^{2} \frac{x}{2}-1\right) d x=\int \sec ^{2} \frac{x}{2} d x-\int d x$
$\Rightarrow y=2 \tan \frac{x}{2}-x+\mathrm{C}$
This is the required general solution of the given differential equation.

Question 2:

$\frac{d y}{d x}=\sqrt{4-y^{2}} \quad(-2<y<2)$
Answer
The given differential equation is:
$\frac{d y}{d x}=\sqrt{4-y^{2}}$
Separating the variables, we get:
$\Rightarrow \frac{d y}{\sqrt{4-y^{2}}}=d x$
Now, integrating both sides of this equation, we get:
$\int \frac{d y}{\sqrt{4-y^{2}}}=\int d x$
$\Rightarrow \sin ^{-1} \frac{y}{2}=x+\mathrm{C}$
$\Rightarrow \frac{y}{2}=\sin (x+\mathrm{C})$
$\Rightarrow y=2 \sin (x+\mathrm{C})$
This is the required general solution of the given differential equation.

Question 3:

$\frac{d y}{d x}+y=1(y \neq 1)$
Answer
The given differential equation is:
$\frac{d y}{d x}+y=1$
$\Rightarrow d y+y d x=d x$
$\Rightarrow d y=(1-y) d x$
Separating the variables, we get:
$\Rightarrow \frac{d y}{1-y}=d x$
Now, integrating both sides, we get:

$$
\begin{aligned}
& \int \frac{d y}{1-y}=\int d x \\
& \Rightarrow \log (1-y)=x+\log \mathrm{C} \\
& \Rightarrow-\log \mathrm{C}-\log (1-y)=x \\
& \Rightarrow \log \mathrm{C}(1-y)=-x \\
& \Rightarrow \mathrm{C}(1-y)=e^{-x} \\
& \Rightarrow 1-y=\frac{1}{\mathrm{C}} e^{-x} \\
& \Rightarrow y=1-\frac{1}{\mathrm{C}} e^{-x} \\
& \Rightarrow y=1+A e^{-x}\left(\text { where } A=-\frac{1}{\mathrm{C}}\right)
\end{aligned}
$$

This is the required general solution of the given differential equation.

Question 4:

$\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$
Answer
The given differential equation is:

$$
\begin{aligned}
& \sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0 \\
& \Rightarrow \frac{\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y}{\tan x \tan y}=0 \\
& \Rightarrow \frac{\sec ^{2} x}{\tan x} d x+\frac{\sec ^{2} y}{\tan y} d y=0 \\
& \Rightarrow \frac{\sec ^{2} x}{\tan x} d x=-\frac{\sec ^{2} y}{\tan y} d y
\end{aligned}
$$

Integrating both sides of this equation, we get:

$$
\begin{equation*}
\int \frac{\sec ^{2} x}{\tan x} d x=-\int \frac{\sec ^{2} y}{\tan y} d y \tag{1}
\end{equation*}
$$

Let $\tan x=t$.
$\therefore \frac{d}{d x}(\tan x)=\frac{d t}{d x}$
$\Rightarrow \sec ^{2} x=\frac{d t}{d x}$
$\Rightarrow \sec ^{2} x d x=d t$
Now, $\int \frac{\sec ^{2} x}{\tan x} d x=\int \frac{1}{t} d t$.

$$
\begin{aligned}
& =\log t \\
& =\log (\tan x)
\end{aligned}
$$

Similarly, $\int \frac{\sec ^{2} x}{\tan x} d y=\log (\tan y)$.
Substituting these values in equation (1), we get:

$$
\begin{aligned}
& \log (\tan x)=-\log (\tan y)+\log \mathrm{C} \\
& \Rightarrow \log (\tan x)=\log \left(\frac{\mathrm{C}}{\tan y}\right) \\
& \Rightarrow \tan x=\frac{\mathrm{C}}{\tan y} \\
& \Rightarrow \tan x \tan y=\mathrm{C}
\end{aligned}
$$

This is the required general solution of the given differential equation.

Question 5:

$\left(e^{x}+e^{-x}\right) d y-\left(e^{x}-e^{-x}\right) d x=0$

Answer

The given differential equation is:
$\left(e^{x}+e^{-x}\right) d y-\left(e^{x}-e^{-x}\right) d x=0$
$\Rightarrow\left(e^{x}+e^{-x}\right) d y=\left(e^{x}-e^{-x}\right) d x$
$\Rightarrow d y=\left[\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right] d x$
Integrating both sides of this equation, we get:
$\int d y=\int\left[\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right] d x+\mathrm{C}$
$\Rightarrow y=\int\left[\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right] d x+\mathrm{C}$
Let $\left(e^{x}+e^{-x}\right)=t$.
Differentiating both sides with respect to x, we get:
$\frac{d}{d x}\left(e^{x}+e^{-x}\right)=\frac{d t}{d x}$
$\Rightarrow e^{x}-e^{-x}=\frac{d t}{d t}$
$\Rightarrow\left(e^{x}-e^{-x}\right) d x=d t$
Substituting this value in equation (1), we get:
$y=\int_{t}^{\frac{1}{t}} d t+\mathrm{C}$
$\Rightarrow y=\log (t)+\mathrm{C}$
$\Rightarrow y=\log \left(e^{x}+e^{-x}\right)+\mathrm{C}$
This is the required general solution of the given differential equation.

Question 6:

$\frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right)$
Answer
The given differential equation is:
$\frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right)$
$\Rightarrow \frac{d y}{1+y^{2}}=\left(1+x^{2}\right) d x$
Integrating both sides of this equation, we get:
$\int \frac{d y}{1+y^{2}}=\int\left(1+x^{2}\right) d x$
$\Rightarrow \tan ^{-1} y=\int d x+\int x^{2} d x$
$\Rightarrow \tan ^{-1} y=x+\frac{x^{3}}{3}+\mathrm{C}$
This is the required general solution of the given differential equation.

Question 7:

$y \log y d x-x d y=0$
Answer
The given differential equation is:
$y \log y d x-x d y=0$
$\Rightarrow y \log y d x=x d y$
$\Rightarrow \frac{d y}{y \log y}=\frac{d x}{x}$
Integrating both sides, we get:
$\int \frac{d y}{y \log y}=\int \frac{d x}{x}$
Let $\log y=t$.
$\therefore \frac{d}{d y}(\log y)=\frac{d t}{d y}$
$\Rightarrow \frac{1}{y}=\frac{d t}{d y}$
$\Rightarrow \frac{1}{y} d y=d t$
Substituting this value in equation (1), we get:

$$
\begin{aligned}
& \int \frac{d t}{t}=\int \frac{d x}{x} \\
& \Rightarrow \log t=\log x+\log \mathrm{C} \\
& \Rightarrow \log (\log y)=\log \mathrm{C} x \\
& \Rightarrow \log y=\mathrm{C} x \\
& \Rightarrow y=e^{\mathrm{Cx}}
\end{aligned}
$$

This is the required general solution of the given differential equation.

Question 8:

$x^{5} \frac{d y}{d x}=-y^{5}$
Answer
The given differential equation is:
$x^{5} \frac{d y}{d x}=-y^{5}$
$\Rightarrow \frac{d y}{y^{5}}=-\frac{d x}{x^{5}}$
$\Rightarrow \frac{d x}{x^{5}}+\frac{d y}{y^{5}}=0$
Integrating both sides, we get:
$\int \frac{d x}{x^{5}}+\int \frac{d y}{y^{5}}=k$ (where k is any constant)
$\Rightarrow \int x^{-5} d x+\int y^{-5} d y=k$
$\Rightarrow \frac{x^{-4}}{-4}+\frac{y^{-4}}{-4}=k$
$\Rightarrow x^{-4}+y^{-4}=-4 k$
$\Rightarrow x^{-4}+y^{-4}=\mathrm{C}$
This is the required general solution of the given differential equation.

Question 9:
$\frac{d y}{d x}=\sin ^{-1} x$
Answer
The given differential equation is:
$\frac{d y}{d x}=\sin ^{-1} x$
$\Rightarrow d y=\sin ^{-1} x d x$
Integrating both sides, we get:
$\int d y=\int \sin ^{-1} x d x$
$\Rightarrow y=\int\left(\sin ^{-1} x \cdot 1\right) d x$
$\Rightarrow y=\sin ^{-1} x \cdot \int(1) d x-\int\left[\left(\frac{d}{d x}\left(\sin ^{-1} x\right) \cdot \int(1) d x\right)\right] d x$
$\Rightarrow y=\sin ^{-1} x \cdot x-\int\left(\frac{1}{\sqrt{1-x^{2}}} \cdot x\right) d x$
$\Rightarrow y=x \sin ^{-1} x+\int \frac{-x}{\sqrt{1-x^{2}}} d x$
Let $1-x^{2}=t$.
$\Rightarrow \frac{d}{d x}\left(1-x^{2}\right)=\frac{d t}{d x}$
$\Rightarrow-2 x=\frac{d t}{d x}$
$\Rightarrow x d x=-\frac{1}{2} d t$
Substituting this value in equation (1), we get:

$$
\begin{aligned}
& y=x \sin ^{-1} x+\int \frac{1}{2 \sqrt{t}} d t \\
& \Rightarrow y=x \sin ^{-1} x+\frac{1}{2} \cdot \int(t)^{-\frac{1}{2}} d t \\
& \Rightarrow y=x \sin ^{-1} x+\frac{1}{2} \cdot \frac{t^{\frac{1}{2}}}{\frac{1}{2}}+\mathrm{C} \\
& \Rightarrow y=x \sin ^{-1} x+\sqrt{t}+\mathrm{C} \\
& \Rightarrow y=x \sin ^{-1} x+\sqrt{1-x^{2}}+\mathrm{C}
\end{aligned}
$$

This is the required general solution of the given differential equation.

Question 10:

$e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$

Answer

The given differential equation is:
$e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$
$\left(1-e^{x}\right) \sec ^{2} y d y=-e^{x} \tan y d x$
Separating the variables, we get:
$\frac{\sec ^{2} y}{\tan y} d y=\frac{-e^{x}}{1-e^{x}} d x$
Integrating both sides, we get:

$$
\begin{equation*}
\int \frac{\sec ^{2} y}{\tan y} d y=\int \frac{-e^{x}}{1-e^{x}} d x \tag{1}
\end{equation*}
$$

Let $\tan y=u$.
$\Rightarrow \frac{d}{d y}(\tan y)=\frac{d u}{d y}$
$\Rightarrow \sec ^{2} y=\frac{d u}{d y}$
$\Rightarrow \sec ^{2} y d y=d u$
$\therefore \int \frac{\sec ^{2} y}{\tan y} d y=\int \frac{d u}{u}=\log u=\log (\tan y)$

Now, let $1-e^{x}=t$.
$\therefore \frac{d}{d x}\left(1-e^{x}\right)=\frac{d t}{d x}$
$\Rightarrow-e^{x}=\frac{d t}{d x}$
$\Rightarrow-e^{x} d x=d t$
$\Rightarrow \int \frac{-e^{x}}{1-e^{x}} d x=\int \frac{d t}{t}=\log t=\log \left(1-e^{x}\right)$
Substituting the values of $\int \frac{\sec ^{2} y}{\tan y} d y$ and $\int \frac{-e^{x}}{1-e^{x}} d x$ in equation (1), we get:
$\Rightarrow \log (\tan y)=\log \left(1-e^{x}\right)+\log C$
$\Rightarrow \log (\tan y)=\log \left[C\left(1-e^{x}\right)\right]$
$\Rightarrow \tan y=\mathrm{C}\left(1-e^{x}\right)$
This is the required general solution of the given differential equation.

Question 11:

$\left(x^{3}+x^{2}+x+1\right) \frac{d y}{d x}=2 x^{2}+x ; y=1$ when $x=0$

Answer

The given differential equation is:
$\left(x^{3}+x^{2}+x+1\right) \frac{d y}{d x}=2 x^{2}+x$
$\Rightarrow \frac{d y}{d x}=\frac{2 x^{2}+x}{\left(x^{3}+x^{2}+x+1\right)}$
$\Rightarrow d y=\frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)} d x$
Integrating both sides, we get:

$$
\begin{align*}
& \int d y=\int \frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)} d x \tag{1}\\
& \text { Let } \frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+1} . \tag{2}\\
& \Rightarrow \frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)}=\frac{A x^{2}+A+(B x+C)(x+1)}{(x+1)\left(x^{2}+1\right)} \\
& \Rightarrow 2 x^{2}+x=A x^{2}+A+B x^{2}+B x+C x+C \\
& \Rightarrow 2 x^{2}+x=(A+B) x^{2}+(B+C) x+(A+C)
\end{align*}
$$

Comparing the coefficients of x^{2} and x, we get:
$A+B=2$
$B+C=1$
$A+C=0$
Solving these equations, we get:
$A=\frac{1}{2}, B=\frac{3}{2}$ and $C=\frac{-1}{2}$
Substituting the values of A, B, and C in equation (2), we get:
$\frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)}=\frac{1}{2} \cdot \frac{1}{(x+1)}+\frac{1}{2} \frac{(3 x-1)}{\left(x^{2}+1\right)}$
Therefore, equation (1) becomes:
$\int d y=\frac{1}{2} \int \frac{1}{x+1} d x+\frac{1}{2} \int \frac{3 x-1}{x^{2}+1} d x$
$\Rightarrow y=\frac{1}{2} \log (x+1)+\frac{3}{2} \int \frac{x}{x^{2}+1} d x-\frac{1}{2} \int \frac{1}{x^{2}+1} d x$
$\Rightarrow y=\frac{1}{2} \log (x+1)+\frac{3}{4} \cdot \int \frac{2 x}{x^{2}+1} d x-\frac{1}{2} \tan ^{-1} x+\mathrm{C}$
$\Rightarrow y=\frac{1}{2} \log (x+1)+\frac{3}{4} \log \left(x^{2}+1\right)-\frac{1}{2} \tan ^{-1} x+\mathrm{C}$
$\Rightarrow y=\frac{1}{4}\left[2 \log (x+1)+3 \log \left(x^{2}+1\right)\right]-\frac{1}{2} \tan ^{-1} x+\mathrm{C}$
$\Rightarrow y=\frac{1}{4}\left[(x+1)^{2}\left(x^{2}+1\right)^{3}\right]-\frac{1}{2} \tan ^{-1} x+C$

Now, $y=1$ when $x=0$.
$\Rightarrow \mathrm{I}=\frac{1}{4} \log (1)-\frac{1}{2} \tan ^{-1} 0+\mathrm{C}$
$\Rightarrow 1=\frac{1}{4} \times 0-\frac{1}{2} \times 0+C$
$\Rightarrow \mathrm{C}=1$
Substituting $C=1$ in equation (3), we get:
$y=\frac{1}{4}\left[\log (x+1)^{2}\left(x^{2}+1\right)^{3}\right]-\frac{1}{2} \tan ^{-1} x+1$

Question 12:

$$
x\left(x^{2}-1\right) \frac{d y}{d x}=1 ; y=0 \text { when } x=2
$$

Answer

$$
\begin{aligned}
& x\left(x^{2}-1\right) \frac{d y}{d x}=1 \\
& \Rightarrow d y=\frac{d x}{x\left(x^{2}-1\right)} \\
& \Rightarrow d y=\frac{1}{x(x-1)(x+1)} d x
\end{aligned}
$$

Integrating both sides, we get:

$$
\begin{equation*}
\int d y=\int \frac{1}{x(x-1)(x+1)} d x \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { Let } \frac{1}{x(x-1)(x+1)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1} . \tag{2}
\end{equation*}
$$

Let $\frac{1}{x(x-1)(x+1)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1}$.

$$
\begin{align*}
\Rightarrow \frac{1}{x(x-1)(x+1)} & =\frac{A(x-1)(x+1)+B x(x+1)+C x(x-1)}{x(x-1)(x+1)} \tag{2}\\
& =\frac{(A+B+C) x^{2}+(B-C) x-A}{x(x-1)(x+1)}
\end{align*}
$$

Comparing the coefficients of x^{2}, x, and constant, we get:
$A=-1$
$B-C=0$
$A+B+C=0$
Solving these equations, we get $B=\frac{1}{2}$ and $C=\frac{1}{2}$.
Substituting the values of A, B, and C in equation (2), we get:
$\frac{1}{x(x-1)(x+1)}=\frac{-1}{x}+\frac{1}{2(x-1)}+\frac{1}{2(x+1)}$
Therefore, equation (1) becomes:
$\int d y=-\int \frac{1}{x} d x+\frac{1}{2} \int \frac{1}{x-1} d x+\frac{1}{2} \int \frac{1}{x+1} d x$
$\Rightarrow y=-\log x+\frac{1}{2} \log (x-1)+\frac{1}{2} \log (x+1)+\log k$
$\Rightarrow y=\frac{1}{2} \log \left[\frac{k^{2}(x-1)(x+1)}{x^{2}}\right]$
Now, $y=0$ when $x=2$.
$\Rightarrow 0=\frac{1}{2} \log \left[\frac{k^{2}(2-1)(2+1)}{4}\right]$
$\Rightarrow \log \left(\frac{3 k^{2}}{4}\right)=0$
$\Rightarrow \frac{3 k^{2}}{4}=1$
$\Rightarrow 3 k^{2}=4$
$\Rightarrow k^{2}=\frac{4}{3}$
Substituting the value of k^{2} in equation (3), we get:
$y=\frac{1}{2} \log \left[\frac{4(x-1)(x+1)}{3 x^{2}}\right]$
$y=\frac{1}{2} \log \left[\frac{4\left(x^{2}-1\right)}{3 x^{2}}\right]$

Question 13:
$\cos \left(\frac{d y}{d x}\right)=a(a \in R) ; y=1$ when $x=0$
Answer
$\cos \left(\frac{d y}{d x}\right)=a$
$\Rightarrow \frac{d y}{d x}=\cos ^{-1} a$
$\Rightarrow d y=\cos ^{-1} a d x$
Integrating both sides, we get:
$\int d y=\cos ^{-1} a \int d x$
$\Rightarrow y=\cos ^{-1} a \cdot x+\mathrm{C}$
$\Rightarrow y=x \cos ^{-1} a+\mathrm{C}$

Now, $y=1$ when $x=0$.
$\Rightarrow 1=0 \cdot \cos ^{-1} a+\mathrm{C}$
$\Rightarrow \mathrm{C}=1$
Substituting $\mathrm{C}=1$ in equation (1), we get:
$y=x \cos ^{-1} a+1$
$\Rightarrow \frac{y-1}{x}=\cos ^{-1} a$
$\Rightarrow \cos \left(\frac{y-1}{x}\right)=a$

Question 14:

$\frac{d y}{d x}=y \tan x ; y=1$ when $x=0$
Answer
$\frac{d y}{d x}=y \tan x$
$\Rightarrow \frac{d y}{y}=\tan x d x$
Integrating both sides, we get:

$$
\begin{align*}
& \int \frac{d y}{y}=-\int \tan x d x \\
& \Rightarrow \log y=\log (\sec x)+\log \mathrm{C} \\
& \Rightarrow \log y=\log (\mathrm{C} \sec x) \\
& \Rightarrow y=\mathrm{C} \sec x \tag{1}
\end{align*}
$$

Now, $y=1$ when $x=0$.
$\Rightarrow 1=\mathrm{C} \times \sec 0$
$\Rightarrow 1=\mathrm{C} \times 1$
$\Rightarrow \mathrm{C}=1$
Substituting $\mathrm{C}=1$ in equation (1), we get:
$y=\sec x$

Question 15:

Find the equation of a curve passing through the point $(0,0)$ and whose differential equation is $y^{\prime}=e^{x} \sin x$.
Answer
The differential equation of the curve is:
$y^{\prime}=e^{x} \sin x$
$\Rightarrow \frac{d y}{d x}=e^{x} \sin x$
$\Rightarrow d y=e^{x} \sin x$
Integrating both sides, we get:
$\int d y=\int e^{x} \sin x d x$
Let $I=\int e^{x} \sin x d x$.
$\Rightarrow I=\sin x \int e^{x} d x-\int\left(\frac{d}{d x}(\sin x) \cdot \int e^{x} d x\right) d x$

$$
\begin{aligned}
& \Rightarrow I=\sin x \cdot e^{x}-\int \cos x \cdot e^{x} d x \\
& \Rightarrow I=\sin x \cdot e^{x}-\left[\cos x \cdot \int e^{x} d x-\int\left(\frac{d}{d x}(\cos x) \cdot \int e^{x} d x\right) d x\right] \\
& \Rightarrow I=\sin x \cdot e^{x}-\left[\cos x \cdot e^{x}-\int(-\sin x) \cdot e^{x} d x\right] \\
& \Rightarrow I=e^{x} \sin x-e^{x} \cos x-I \\
& \Rightarrow 2 I=e^{x}(\sin x-\cos x) \\
& \Rightarrow I=\frac{e^{x}(\sin x-\cos x)}{2}
\end{aligned}
$$

Substituting this value in equation (1), we get:
$y=\frac{e^{x}(\sin x-\cos x)}{2}+\mathrm{C}$
Now, the curve passes through point $(0,0)$.
$\therefore 0=\frac{e^{0}(\sin 0-\cos 0)}{2}+\mathrm{C}$
$\Rightarrow 0=\frac{1(0-1)}{2}+\mathrm{C}$
$\Rightarrow \mathrm{C}=\frac{1}{2}$
Substituting $\mathrm{C}=\frac{1}{2}$ in equation (2), we get:
$y=\frac{e^{x}(\sin x-\cos x)}{2}+\frac{1}{2}$
$\Rightarrow 2 y=e^{x}(\sin x-\cos x)+1$
$\Rightarrow 2 y-1=e^{x}(\sin x-\cos x)$
Hence, the required equation of the curve is $2 y-1=e^{x}(\sin x-\cos x)$.

Question 16:

For the differential equation $x y \frac{d y}{d x}=(x+2)(y+2)$, find the solution curve passing through the point $(1,-1)$.

Answer

The differential equation of the given curve is:
$x y \frac{d y}{d x}=(x+2)(y+2)$
$\Rightarrow\left(\frac{y}{y+2}\right) d y=\left(\frac{x+2}{x}\right) d x$
$\Rightarrow\left(1-\frac{2}{y+2}\right) d y=\left(1+\frac{2}{x}\right) d x$
Integrating both sides, we get:

$$
\begin{align*}
& \int\left(1-\frac{2}{y+2}\right) d y=\int\left(1+\frac{2}{x}\right) d x \\
& \Rightarrow \int d y-2 \int \frac{1}{y+2} d y=\int d x+2 \int \frac{1}{x} d x \\
& \Rightarrow y-2 \log (y+2)=x+2 \log x+\mathrm{C} \\
& \Rightarrow y-x-\mathrm{C}=\log x^{2}+\log (y+2)^{2} \\
& \Rightarrow y-x-\mathrm{C}=\log \left[x^{2}(y+2)^{2}\right] \tag{1}
\end{align*}
$$

Now, the curve passes through point $(1,-1)$.
$\Rightarrow-1-1-\mathrm{C}=\log \left[(1)^{2}(-1+2)^{2}\right]$
$\Rightarrow-2-\mathrm{C}=\log 1=0$
$\Rightarrow \mathrm{C}=-2$
Substituting $C=-2$ in equation (1), we get:
$y-x+2=\log \left[x^{2}(y+2)^{2}\right]$
This is the required solution of the given curve.

Question 17:

Find the equation of a curve passing through the point $(0,-2)$ given that at any point (x, y) on the curve, the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point.
Answer
Let x and y be the x-coordinate and y-coordinate of the curve respectively.

We know that the slope of a tangent to the curve in the coordinate axis is given by the relation,
$\frac{d y}{d x}$
According to the given information, we get:
$y \cdot \frac{d y}{d x}=x$
$\Rightarrow y d y=x d x$
Integrating both sides, we get:
$\int y d y=\int x d x$
$\Rightarrow \frac{y^{2}}{2}=\frac{x^{2}}{2}+\mathrm{C}$
$\Rightarrow y^{2}-x^{2}=2 \mathrm{C}$
Now, the curve passes through point $(0,-2)$.
$\therefore(-2)^{2}-0^{2}=2 C$
$\Rightarrow 2 \mathrm{C}=4$
Substituting $2 \mathrm{C}=4$ in equation (1), we get:
$y^{2}-x^{2}=4$
This is the required equation of the curve.

Question 18:

At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point $(-4,-3)$. Find the equation of the curve given that it passes through $(-2,1)$.
Answer

It is given that (x, y) is the point of contact of the curve and its tangent.
The slope $\left(m_{1}\right)$ of the line segment joining (x, y) and $(-4,-3)$ is $\frac{y+3}{x+4}$.
We know that the slope of the tangent to the curve is given by the relation,
$\frac{d y}{d x}$
\therefore Slope $\left(m_{2}\right)$ of the tangent $=\frac{d y}{d x}$
According to the given information:
$m_{2}=2 m_{1}$
$\Rightarrow \frac{d y}{d x}=\frac{2(y+3)}{x+4}$
$\Rightarrow \frac{d y}{y+3}=\frac{2 d x}{x+4}$
Integrating both sides, we get:

$$
\begin{align*}
& \int \frac{d y}{y+3}=2 \int \frac{d x}{x+4} \\
& \Rightarrow \log (y+3)=2 \log (x+4)+\log C \\
& \Rightarrow \log (y+3) \log C(x+4)^{2} \\
& \Rightarrow y+3=C(x+4)^{2} \tag{1}
\end{align*}
$$

This is the general equation of the curve.
It is given that it passes through point $(-2,1)$.
$\Rightarrow 1+3=C(-2+4)^{2}$
$\Rightarrow 4=4 \mathrm{C}$
$\Rightarrow \mathrm{C}=1$
Substituting $C=1$ in equation (1), we get:
$y+3=(x+4)^{2}$
This is the required equation of the curve.

Question 19:

The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.

Answer
Let the rate of change of the volume of the balloon be k (where k is a constant).
$\Rightarrow \frac{d v}{d t}=k$
$\Rightarrow \frac{d}{d t}\left(\frac{4}{3} \pi r^{3}\right)=k \quad\left[\right.$ Volume of sphere $\left.=\frac{4}{3} \pi r^{3}\right]$
$\Rightarrow \frac{4}{3} \pi \cdot 3 r^{2} \cdot \frac{d r}{d t}=k$
$\Rightarrow 4 \pi r^{2} d r=k d t$
Integrating both sides, we get:
$4 \pi \int r^{2} d r=k \int d t$
$\Rightarrow 4 \pi \cdot \frac{r^{3}}{3}=k t+\mathrm{C}$
$\Rightarrow 4 \pi r^{3}=3(k t+C)$
Now, at $t=0, r=3$:
$\Rightarrow 4 \pi \times 3^{3}=3(k \times 0+C)$
$\Rightarrow 108 \square=3 C$
$\Rightarrow C=36 п$

At $t=3, r=6$:
$\Rightarrow 4 п \times 6^{3}=3(k \times 3+C)$
$\Rightarrow 864 п=3(3 k+36 п)$
$\Rightarrow 3 k=-288 п-36 п=252 п$
$\Rightarrow k=84 п$

Substituting the values of k and C in equation (1), we get:

$$
\begin{aligned}
& 4 \pi r^{3}=3[84 \pi t+36 \pi] \\
& \Rightarrow 4 \pi r^{3}=4 \pi(63 t+27) \\
& \Rightarrow r^{3}=63 t+27 \\
& \Rightarrow r=(63 t+27)^{\frac{1}{3}}
\end{aligned}
$$

Thus, the radius of the balloon after t seconds is $(63 t+27)^{\frac{1}{3}}$.

Question 20:

In a bank, principal increases continuously at the rate of $r \%$ per year. Find the value of r if Rs 100 doubles itself in 10 years $\left(\log _{e} 2=0.6931\right)$.

Answer

Let p, t, and r represent the principal, time, and rate of interest respectively.
It is given that the principal increases continuously at the rate of $r \%$ per year.
$\Rightarrow \frac{d p}{d t}=\left(\frac{r}{100}\right) p$
$\Rightarrow \frac{d p}{p}=\left(\frac{r}{100}\right) d t$
Integrating both sides, we get:

$$
\begin{align*}
& \int \frac{d p}{p}=\frac{r}{100} \int d t \\
& \Rightarrow \log p=\frac{r t}{100}+k \\
& \Rightarrow p=e^{\frac{r t}{100}+k} \tag{1}
\end{align*}
$$

It is given that when $t=0, p=100$.
$\Rightarrow 100=e^{k}$

Now, if $t=10$, then $p=2 \times 100=200$.
Therefore, equation (1) becomes:

$$
\begin{aligned}
& 200=e^{\frac{r}{10}+k} \\
& \Rightarrow 200=e^{\frac{r}{10}} \cdot e^{k} \\
& \Rightarrow 200=e^{\frac{r}{10}} \cdot 100 \\
& \Rightarrow e^{\frac{r}{10}}=2 \\
& \Rightarrow \frac{r}{10}=\log _{e} 2 \\
& \Rightarrow \frac{r}{10}=0.6931 \\
& \Rightarrow r=6.931
\end{aligned}
$$

(From (2))

Hence, the value of r is 6.93%.

Question 21:

In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs
1000 is deposited with this bank, how much will it worth after 10 years $\left(e^{0.5}=1.648\right)$.
Answer
Let p and t be the principal and time respectively.
It is given that the principal increases continuously at the rate of 5% per year.
$\Rightarrow \frac{d p}{d t}=\left(\frac{5}{100}\right) p$
$\Rightarrow \frac{d p}{d t}=\frac{p}{20}$
$\Rightarrow \frac{d p}{p}=\frac{d t}{20}$
Integrating both sides, we get:
$\int \frac{d p}{p}=\frac{1}{20} \int d t$
$\Rightarrow \log p=\frac{t}{20}+\mathrm{C}$
$\Rightarrow p=e^{\frac{1}{20}+\mathrm{C}}$
Now, when $t=0, p=1000$.
$\Rightarrow 1000=e^{c}$

At $t=10$, equation (1) becomes:
$p=e^{\frac{1}{2}+\mathrm{C}}$
$\Rightarrow p=e^{0.5} \times e^{\mathrm{c}}$
$\Rightarrow p=1.648 \times 1000$
$\Rightarrow p=1648$
Hence, after 10 years the amount will worth Rs 1648.

Question 22:

In a culture, the bacteria count is 1,00,000. The number is increased by 10% in 2 hours.
In how many hours will the count reach $2,00,000$, if the rate of growth of bacteria is proportional to the number present?

Answer
Let y be the number of bacteria at any instant t.
It is given that the rate of growth of the bacteria is proportional to the number present.
$\therefore \frac{d y}{d t} \propto y$
$\Rightarrow \frac{d y}{d t}=k y$ (where k is a constant)
$\Rightarrow \frac{d y}{y}=k d t$
Integrating both sides, we get:
$\int \frac{d y}{y}=k \int d t$
$\Rightarrow \log y=k t+\mathrm{C}$
Let y_{0} be the number of bacteria at $t=0$.
$\Rightarrow \log y_{0}=C$

Substituting the value of C in equation (1), we get:

$$
\begin{align*}
& \log y=k t+\log y_{0} \\
& \Rightarrow \log y-\log y_{0}=k t \\
& \Rightarrow \log \left(\frac{y}{y_{0}}\right)=k t \\
& \Rightarrow k t=\log \left(\frac{y}{y_{0}}\right) \tag{2}
\end{align*}
$$

Also, it is given that the number of bacteria increases by 10% in 2 hours.
$\Rightarrow y=\frac{110}{100} y_{0}$
$\Rightarrow \frac{y}{y_{0}}=\frac{11}{10}$
Substituting this value in equation (2), we get:
$k \cdot 2=\log \left(\frac{11}{10}\right)$
$\Rightarrow k=\frac{1}{2} \log \left(\frac{11}{10}\right)$
Therefore, equation (2) becomes:
$\frac{1}{2} \log \left(\frac{11}{10}\right) \cdot t=\log \left(\frac{y}{y_{0}}\right)$
$\Rightarrow t=\frac{2 \log \left(\frac{y}{y_{0}}\right)}{\log \left(\frac{11}{10}\right)}$
Now, let the time when the number of bacteria increases from 100000 to 200000 be t_{1}.
$\Rightarrow y=2 y_{0}$ at $t=t_{1}$

From equation (4), we get:

$$
t_{1}=\frac{2 \log \left(\frac{y}{y_{0}}\right)}{\log \left(\frac{11}{10}\right)}=\frac{2 \log 2}{\log \left(\frac{11}{10}\right)}
$$

Hence, in $\frac{2 \log 2}{\log \left(\frac{11}{10}\right)}$ hours the number of bacteria increases from 100000 to 200000.

Question 23:

The general solution of the differential equation $\frac{d y}{d x}=e^{x+y}$ is
A. $e^{x}+e^{-y}=\mathrm{C}$
B. $e^{x}+e^{y}=\mathrm{C}$
C. $e^{-x}+e^{y}=\mathrm{C}$
D. $e^{-x}+e^{-y}=\mathrm{C}$

Answer
$\frac{d y}{d x}=e^{x+y}=e^{x} \cdot e^{y}$
$\Rightarrow \frac{d y}{e^{y}}=e^{x} d x$
$\Rightarrow e^{-y} d y=e^{x} d x$
Integrating both sides, we get:
$\int e^{-y} d y=\int e^{x} d x$
$\Rightarrow-e^{-y}=e^{x}+k$
$\Rightarrow e^{x}+e^{-y}=-k$
$\Rightarrow e^{x}+e^{-y}=c$

$$
(c=-k)
$$

Hence, the correct answer is A.

