∛Saral

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

Statement 1 : S₈ disproportionate into H₂S₂O₃ and 1. S²⁻ in alkaline medium

Statement 2 : CIO₄⁻ undergoes disproportionation in acidic medium.

- (1) Statement 1 is correct but statement 2 is incorrect
- (2) Statement 1 is incorrect but statement 2 is correct
- (3) Both statement 1 and statement 2 are correct
- (4) Both statement 1 and statement 2 are incorrect

Answer (1)

Sol. (1)
$$S_8^{\circ} + \text{NaOH} \rightarrow \text{Na}_2^{-2} + \text{Na}_2^{+2}\text{O}_3$$

Reduction

(2) Cl is in its highest oxidation state (+7). It cannot be further oxidised

Therefore, statement 1 is correct but statement 2 is incorrect.

- 2. Which of the following is correct?
 - (1) [NiCl₄]²⁻ diamagnetic [Ni(CO)₄] – diamagnetic
 - (2) [Ni(CO)₄] diamagnetic [NiCl₄]²⁻ – paramagnetic
 - (3) [NiCl₄]²⁻ paramagnetic [Ni(CO)₄] - paramagnetic
 - (4) [NiCl₄]²⁻ paramagnetic [Ni(CO)₄] – diamagnetic

Answer (2)

Sol. Ni²⁺ : $4s^03d^8$ (No pairing with CI⁻) [Ni(CO)₄]: 4s⁰3d¹⁰ (diamagnetic)

JEE Mains Shift-2 Answer Key

Å

3. Statement-I: Among 15th group hydrides reducing character decreases from NH₃ to BiH₃.

Statement-II : E₂O₃ and E₂O₅ are always basic.

[Where E is group 15 element]

- (1) Both statement-I and Statement-II are correct
- (2) Statement-I is correct and Statement-II is false
- (3) Statement-I is false and Statement-II is correct
- (4) Both Statement-I and Statement-II are false

Answer (4)

- Sol. Reducing character increases from NH₃ to BiH₃. Group 15 oxides of type E₂O₃ and E₂O₅ are not always basic.
- 4. Which of the following has maximum ionic character?

(2) AgCl

(3) CoCl₂ (4) BaCl₂

Answer (1)

Sol. Polarisation power $\propto \frac{\text{Charge}}{\text{Size}}$

for K⁺, polarising power is least and ionic character is maximum.

- Match the following : 5.
 - (a) $[Cr(H_2O)_6]^{+3}$ (i) $t_{2\alpha}^2 eg^{\alpha}$
 - (ii) $t_{2g}^3 eg^\circ$ (b) $[Fe(H_2O)_6]^{+3}$
 - (iii) $t_{2\sigma}^3 eg^2$ (c) $[Ni(H_2O)_6]^{+2}$
 - (d) [V(H₂O)₆]⁺³ (iv) $t_{20}^{6}eg^{2}$
 - (1) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
 - (2) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
 - (3) (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i)
 - (4) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)

Answer (1)

Sol. (a) $[Cr(H_2O)_6]^{+3} \rightarrow Cr^{+3} \rightarrow t^3_{20}eg^{\circ}$ (b) $[Fe(H_2O)_6]^{+3} \rightarrow Fe^{3+} \rightarrow t^3_{2a}eg^2$ (c) $[Ni(H_2O)_6]^{+2} \rightarrow Ni^{2+} \rightarrow t^6_{2a}eg^2$ (d) $[V(H_2O)_6]^{+3} \rightarrow V^{3+} \rightarrow t^2_{2a}eg^{\circ}$

<mark>∛</mark>Saral

Ą

- 6. Quantum number for outermost electron of K-atom are given by
 - (1) $n = 4, l = 0, m = 0, s = \frac{1}{2}$

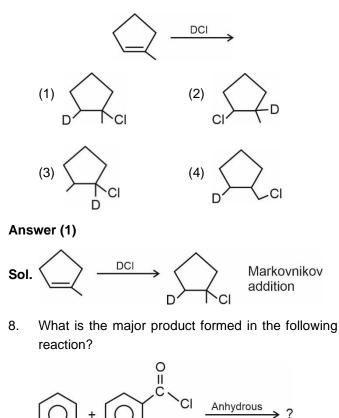
(2)
$$n = 4, l = 1, m = 0, s = \frac{1}{2}$$

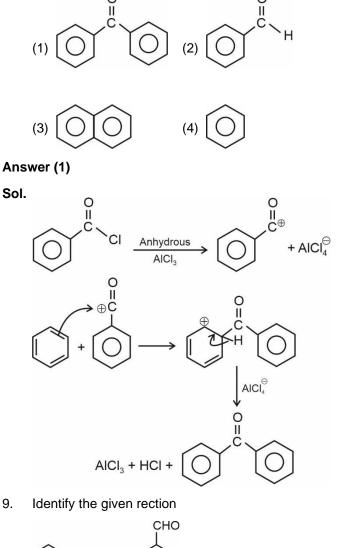
(3)
$$n = 3, l = 0, m = 0, s = \frac{1}{2}$$

(4)
$$n = 4$$
, $l = 0$, $m = 1$, $s = \frac{1}{2}$

Answer (1)

Sol. $K_{19} = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$


For 4s electron


n = 4

$$I = 0$$

m = 0

- $S = \frac{1}{2}$
- 7. What is the product formed in the below given reaction?

- $\bigcirc \underbrace{\text{CO + HCl}}_{\text{Anhy. AlCl}_3} \bigcirc \underbrace{\text{O}}_{\text{CO + HCl}_3}$
- (1) Rosenmund reaction
- (2) Stephen reaction
- (3) Gattemann Koch reaction
- (4) Etard reaction

Answer (3)

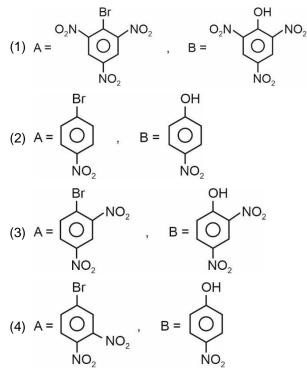
Sol. The given reaction is Gattemann Koch reaction.

- 10. Choose the correct answers.
 - (A) Mn₂O₇ is a oil at room temperature.
 - (B) V_2O_4 react with acid to give VO^{2+}
 - (C) CrO is a basic oxide
 - (D) V_2O_5 does not react with acids.
 - (1) A, B and C only (2) B, C and D only
 - (3) A only (4)
 - (4) B and C only

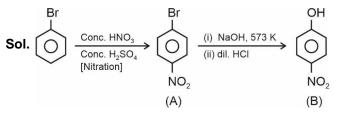
Answer (1)

JEE Mains Shift-2 Answer Key

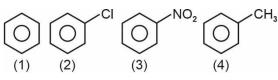
<mark>∛S</mark>aral


- Sol. A, B and C are correct.
 - Mn₂O₇ is a green oil at room temperature.
 - V₂O₄ react with acids to give VO²⁺.
 - CrO is Basic and CrO₃ is acidic.
 - V₂O₅ react with acids as well as alkali.

(Ref. NCERT Pg 224)

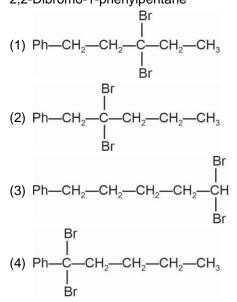

11. Consider the following reaction :

$$\bigcup_{i=1}^{\text{Br}} \xrightarrow{\text{Conc. HNO}_3} A \xrightarrow{(i) \text{NaOH, 573 K}} B$$


A and B respectively are

Answer (2)

12. What will be the reactivity order of following compounds towards electrophilic substitution reaction?



(1)
$$1 > 3 > 2 > 4$$
 (2) $4 > 1 > 2 > 3$
(3) $3 > 2 > 1 > 4$ (4) $4 > 3 > 1 > 2$

Answer (2)

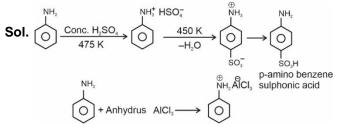
Sol.
$$\bigcirc$$
 $-CH_3 \Rightarrow activating (+1)$
 \bigcirc $-H \Rightarrow Neutral (No effect)$
 \bigcirc $-CI \Rightarrow Weakly deactivating (-1 dominates over +M)$
 \bigcirc $-NO_2 \Rightarrow (-M) \Rightarrow strongly deactivating$
13. Correct IUPAC structure for the given organic

compound is 2,2-Dibromo-1-phenylpentane

Answer (2)

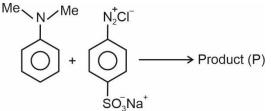
 Statement-I: Aniline on reaction with concentrated H₂SO₄ at 475 K gives p-amino benzene sulphonic acid. This gives blood red colour with Lassaigne's test.

Statement-II : Aniline forms a salt with anhydrus AlCl₃ in Friedel Craft's reaction.

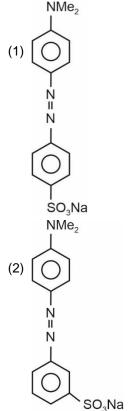

JEE Mains Shift-2 Answer Key

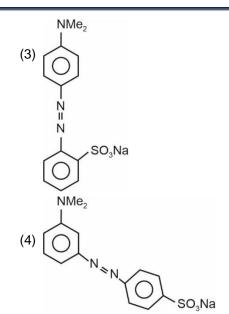
∛Saral

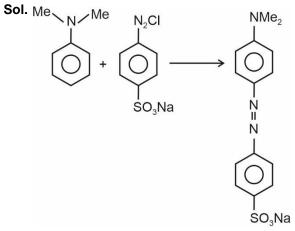
Å


- (1) Both Statement-I and Statement-II are correct
- (2) Both Statement-I and Statement-II are incorrect
- (3) Statement-I is correct and Statement-II incorrect
- (4) Statement-I is incorrect and Statement-II correct

Answer (1)


p-amino benzene sulphonic acid contains both N and S, so it gives blood red colour with Lassaigne's test.


15. Consider the following reaction.


Select P

(Where Me is CH₃)

Answer (1)

is an example of azo coupling reaction and final product is methyl orange.

16.
$$A(g) \Longrightarrow B(g) + \frac{1}{2}C(g)$$

In the about reaction, the correct relation between $K_{\text{p}},\,\alpha$ and equilibrium pressure (p) is

(1)
$$K_{p} = \frac{\alpha^{\frac{1}{2}} 2p^{\frac{1}{2}}}{(2+\alpha)^{\frac{1}{2}}}$$

(2) $K_{p} = \frac{\alpha^{\frac{1}{2}} p^{3/2}}{(2+\alpha)^{3/2}}$
(3) $K_{p} = \frac{\alpha^{\frac{1}{2}} 2p^{\frac{1}{2}}}{(2+\alpha)^{3/2}}$
(4) $K_{p} = \frac{\alpha^{3/2} p^{\frac{1}{2}}}{(2+\alpha)^{\frac{1}{2}}(1-\alpha)}$

Answer (4)

JEE Mains Shift-2 Answer Key

www.esaral.com

∛Saral

Sol.

 $A(g) \iff B(g) + \frac{1}{2}(g)$ 0 0 Initial n moles Eqb. $n(1 - \alpha) n\alpha$ nα moles total moles = $n(1+\alpha)$ Eqb. $(1 - \alpha)p$ $\frac{\alpha p}{1 + \alpha}$ $(\frac{\alpha}{2})p$ pressure $\frac{(1 - \alpha)p}{1 + \alpha}$ $\frac{\alpha p}{1 + \alpha}$ $\frac{(\frac{\alpha}{2})p}{1 + \alpha}$ $K_{p} = \frac{\alpha p}{\left(1 + \frac{\alpha}{2}\right)} \times \left[\frac{\alpha p}{\left(2 + \alpha\right)}\right]^{\frac{1}{2}}$ $\frac{(1-\alpha)p}{1+\frac{\alpha}{2}}$ $K_{p} = \frac{\alpha^{3/2} p^{\frac{1}{2}}}{(2+\alpha)^{\frac{1}{2}} (1-\alpha)}$ 17. 18. 19. 20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. Half life of a first order reaction is 36 hr. Find out time (in hr) required for concentration of reactant to get reduced by 90%.

Answer (120)

Sol.
$$t_{90} = \frac{2.303}{k} \log \left(\frac{100}{100 - 90} \right)$$

= $\frac{2.303 \times 36}{2.303 \times \log 2} \times \log 10 = \frac{36}{0.3} = 120$

22. A 1 mol ideal gas expands from 10 L to 100 L at 300 k, if above expansion takes place reversibly and isothermally then magnitude of work done is (in KJ)

Answer (06)

Sol. w = -nRT ln $\frac{V_2}{V_4}$ 28. 29. **١**

$$|w| = 2.303 \text{ nRT } \log \frac{V_2}{V_1}$$

JEE | NEET | Class 8 - 10 Download eSaral App

$$|w| = 1 \times 2.303 \times 8.314 \times 300 \log \frac{100}{10}$$

|w| = 5744 J

 $|w| = 5.744 \text{ kJ} \approx 6 \text{ kJ}$

23. How many of the following vitamins are stored in Human Body?

A, B, C, D, E, K?

Answer (4)

Sol. A, D, E, K vitamins are fat soluble vitamins, are stored in liver and adipose tissue.

While vitamin B and vitamin C are water soluble and must be supplied regularly in diet (not stored) (except vitamin B₁₂) (NCERT, Pg: 426)

24. Number of moles of H⁺ required by 1 mole $MnO_4^$ to oxidize oxalate ion to CO₂ is_____.

Answer (8)

Sol. The balanced reaction is as follows

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

2 mole MnO₄⁻ react with 16 mole H⁺

1 mole MnO_4^- will react with 8 mole H⁺

25. The potassium chloride is heated with potassium dichromate and conc. sulphuric acid to give products. The oxidation state of chromium in product is (+)___ .

Answer (06.00)

Sol. This is an example of chromyl chloride test

 $K_2Cr_2O_7 + 4KCI + 6H_2SO_4 \rightarrow 6KHSO_4$

+ 2CrO₂Cl₂ + 3H₂O

Oxidation state of Cr is +6.

26. Number of structural isomeric products formed by monochlorination of 2-methylbutane in presence of sunlight is_

Answer (4)

Sol
$$H_{3}C - CH_{2} - CH - CH_{3} \xrightarrow{Monochlorination} H_{3}C - CH_{2} - \overset{c}{C}H - CH_{2}CI$$

 $\downarrow CH_{3} \qquad H_{3}C - CH_{2} - CCI - CH_{3}$
 $\downarrow H_{3}C - \overset{c}{C}HCI - CH - CH_{3}$
 $\downarrow H_{3}C - \overset{c}{C}HCI - CH - CH_{3}$
 $\downarrow CH_{3}$
 $CIH_{2}C - CH_{2} - CH - CH_{3}$
 $\downarrow CH_{3}$
 $CIH_{2}C - CH_{2} - CH - CH_{3}$
 $\downarrow CH_{3}$
 $CIH_{3}C - \overset{c}{C}HCI - CH - CH_{3}$
 $\downarrow CH_{3}$
 $CIH_{2}C - CH_{2} - CH - CH_{3}$
 $\downarrow CH_{3}$
 $CIH_{3}C - CH_{3} - CH - CH_{3}$
 $\downarrow CH_{3}$
 $CIH_{3}C - CH_{3} - CH - CH_{3}$
 $\downarrow CH_{3}$
 $CIH_{3}C - CH_{3} - CH - CH_{3}$
 $\downarrow CH_{3}$
 $CIH_{3}C - CH_{3} - CH - CH_{3}$
 $\downarrow CH_{3}$
 $CIH_{3}C - CH_{3} - CH - CH_{3}$
 $\downarrow CH_{3}$
 $CIH_{3}C - CH_{3} - CH - CH_{3}$
 $\downarrow CH_{3}$
 $CIH_{3}C - CH_{3} - CH - CH_{3}$
 $\downarrow CH_{3}$
 $CIH_{3}C - CH_{3} - CH - CH_{3}$
 $\downarrow CH_{3}$
 $CIH_{3}C - CH_{3} - CH - CH_{3}$
 $\downarrow CH_{3}$
 $CIH_{3}C - CH_{3} - CH - CH_{3}$
 $\downarrow CH_{3}$
 $CIH_{3}C - CH_{3} - CH - CH_{3}$
 $\downarrow CH_{3}$
 $\downarrow CH_{3}$
 $CIH_{3}C - CH_{3} - CH - CH_{3}$
 $\downarrow CH_{3}$
 \downarrow

JEE Mains Shift-2 Answer Key

30.