PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. For the block shown, F_{1} is the minimum force required to move block upwards and F_{2} is the minimum force required to prevent it from slipping, find $\left|\vec{F}_{1}-\vec{F}_{2}\right|$

(1) $50 \sqrt{3} \mathrm{~N}$
(2) $5 \sqrt{3} \mathrm{~N}$
(3) $25 \sqrt{3} \mathrm{~N}$
(4) $\frac{5 \sqrt{3}}{2} \mathrm{~N}$

Answer (2)

Sol. $f_{K}=\mu m g \cos \theta$

$$
\begin{aligned}
& =0.1 \times \frac{50 \times \sqrt{3}}{2} \\
& =2.5 \sqrt{3} \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
F_{1} & =m g \sin \theta+f_{K} \\
& =25+2.5 \sqrt{3} \\
F_{2} & =m g \sin \theta-f_{K} \\
& =25-2.5 \sqrt{3}
\end{aligned}
$$

$\therefore \quad F_{1}-F_{2}=5 \sqrt{3} \mathrm{~N}$
2. Force on a particle moving in straight line is given by $\vec{F}=6 t^{2} \hat{i}-3 t \hat{j}$ and velocity is $\vec{v}=3 t^{2} \hat{i}+6 t \hat{j}$. Find power at $t=2$.
(1) 216 W
(2) 108 W
(3) 0 W
(4) 54 W

Answer (1)

Sol. $P=\vec{F} \cdot \vec{v}$

$$
\begin{aligned}
& =18 t^{4}-18 t^{2} \\
\Rightarrow & P(t=2)=18[16-4]=216 \mathrm{~W}
\end{aligned}
$$

3. If $E=\frac{A-x^{2}}{B t}$ where E is energy, x is displacement and t is time. Find dimensions of $A B$
(1) $\left[\mathrm{M}^{-1} \mathrm{~L}^{2} \mathrm{~T}\right]$
(2) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
(3) $\left[\mathrm{M}^{-1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$
(4) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$

Answer (1)

Sol. $[A]=L^{2}$
$B=\frac{x^{2}}{t E} \equiv \frac{\mathrm{~L}^{2}}{\mathrm{TML}^{2} \mathrm{~T}^{-2}}=\frac{1}{\mathrm{MT}^{-1}}$
$[B]=\mathrm{M}^{-1} \mathrm{~T}$
$[A B]=\left[\mathrm{M}^{-1} \mathrm{~L}^{2} \mathrm{~T}\right]$
4. Unpolarised light incident on transparent glass at incident angle 60°. If reflected ray is completely polarised, then angle of refraction is
(1) 45°
(2) 60°
(3) 30°
(4) 37°

Answer (3)

Sol. By Brewsters law

$$
\begin{aligned}
& \mu=\tan i \\
& \mu=\sqrt{3} \\
& \therefore \quad 1 \times \frac{\sqrt{3}}{2}=\sqrt{3} \times \sin r \\
& \sin r=\frac{1}{2} \\
& r=30^{\circ}
\end{aligned}
$$

5. Two solid spheres each of mass 2 kg and radius 75 cm are arranged as shown. Find MOI of the system about the given axis.

(1) $3.15 \mathrm{~kg} \mathrm{~m}^{2}$
(2) $31.5 \mathrm{~kg} \mathrm{~m}^{2}$
(3) $0.9 \mathrm{~kg} \mathrm{~m}^{2}$
(4) $9 \mathrm{~kg} \mathrm{~m}^{2}$

Answer (1)
Sol. $I=\left(\frac{2}{5} M R^{2}+M R^{2}\right) \times 2$
$=\frac{14}{5} \times 2 \times \frac{9}{16}$
$=\frac{63}{20}$
$=3.15 \mathrm{~kg} \mathrm{~m}^{2}$
6. If the current through an incandescent lamp decreases by 20%, how much change will be there in its illumination?
(1) 36%
(2) 64%
(3) 20%
(4) 40%

Answer (1)
Sol. $p=i^{2} R$

$$
p^{\prime}=0.64 i^{2} R
$$

7. Find the speed of sound in oxygen gas at STP.
(1) $300 \mathrm{~m} / \mathrm{s}$
(2) $350 \mathrm{~m} / \mathrm{s}$
(3) $330 \mathrm{~m} / \mathrm{s}$
(4) $400 \mathrm{~m} / \mathrm{s}$

Answer (3)

Sol. $v=\sqrt{\frac{\gamma R T}{M}}=330 \mathrm{~m} / \mathrm{s}$
8. Find average power in electric circuit if source voltage $(V)=20 \sin (100 \omega t)$ and current in the circuit
$(I)=2 \sin \left(100 \omega t+\frac{\pi}{3}\right)$
(1) 10 W
(2) 20 W
(3) 5 W
(4) 15.5 W

Answer (1)
Sol. $\langle P\rangle=I V \cos \phi$

$$
\begin{aligned}
& =\frac{20}{\sqrt{2}} \times \frac{2}{\sqrt{2}} \times \cos 60^{\circ} \\
& =10 \mathrm{~W}
\end{aligned}
$$

9. In a photoelectric experiment, frequency $f=1.5 f_{0}$ (f_{0} : threshold frequency). If the frequency of light is changed to $f / 2$, then photocurrent becomes (intensity of light has doubled)
(1) Zero
(2) Doubled
(3) Same
(4) Thrice

Answer (1)
Sol. Since $\frac{f}{2}<f_{0}$

$$
\Rightarrow \text { current }=0
$$

10. Radius of curvature of equiconvex lens is 20 cm . Material of lens is having refractive index of 1.5 . Find image distance from lens if an object is placed 10 cm away from the lens.
(1) 20 cm
(2) 10 cm
(3) 40 cm
(4) 5 cm

Answer (1)
Sol. $\frac{1}{f}=(\mu-1)\left(\frac{2}{R}\right) \quad f=20 \mathrm{~cm}$
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
$\frac{1}{v}+\frac{1}{10}=\frac{1}{20}$
11.

Draw truth table of given gate circuit.

(1) | A | B | X |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

(2) | A | B | X |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

(3) | A | B | X |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

(4) | A | B | X |
| :--- | :--- | :--- |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

Answer (2)
Sol. $X=\overline{(A+\bar{B})+(\bar{A}+B)}$

$$
(\overline{A+\bar{B}}) \cdot(\overline{\bar{A}+B})
$$

$(\bar{A} \cdot \overline{\bar{B}}) \cdot(\overline{\bar{A}} \cdot \bar{B})$
$(\bar{A} \cdot B) \cdot(A \cdot \bar{B})=\bar{A} \cdot B \cdot A \cdot \bar{B}=0$
12. The magnetic flux through a loop varies with time as $\phi=5 t^{2}-3 t+5$. If the resistance of loop is 8Ω, find the current through it at $t=2 \mathrm{~s}$
(1) $\frac{15}{8} \mathrm{~A}$
(2) $\frac{5}{8} \mathrm{~A}$
(3) $\frac{17}{8} \mathrm{~A}$
(4) $\frac{13}{8} \mathrm{~A}$

Answer (3)

Sol. $\frac{d \phi}{d t}=10 t-3$
at $t=2, V=17$
$i=\frac{V}{R}=\frac{17}{8} \mathrm{~A}$
13. 8 moles of oxygen and 4 moles of nitrogen are at same temperature T and are mixed. The total internal energy is
(1) $60 R T$
(2) $15 R T$
(3) $30 R T$
(4) $90 R T$

Answer (3)

Sol. $U=n C_{v} T$

$$
\begin{aligned}
& \Rightarrow \quad U=n_{1} C_{V_{1}} T+n_{2} C_{V_{2}} T \\
& \Rightarrow \quad 8 \times \frac{5 R}{2} \times T+4 \times \frac{5 R}{2} \times T \\
& =30 R T
\end{aligned}
$$

14. In the system shown below, the pulley 4 string are ideal. If the acceleration of blocks is $\frac{g}{8}$, find $\frac{m_{1}}{m_{2}}$

(1) $\frac{9}{7}$
(2) $\frac{8}{7}$
(3) $\frac{5}{7}$
(4) $\frac{9}{8}$

Answer (1)
Sol. $a=\frac{\left(m_{1}-m_{2}\right) g}{\left(m_{1}+m_{2}\right)}=\frac{g}{8}$

$$
\begin{aligned}
& 8 m_{1}-8 m_{2}=m_{1}+m_{2} \\
& 7 m_{1}=9 m_{2} \\
& \frac{m_{1}}{m_{2}}=\frac{9}{7}
\end{aligned}
$$

15. The force between two charged particle placed in air at separation x is F_{0}. Both the charged particle immerged in a medium of dielectric constant K without changing separation between two charge, then net force on one of the particle is now
(1) $\frac{F_{0}}{K}$
(2) $\frac{F_{0}}{2 K}$
(3) $\frac{2 F_{0}}{K}$
(4) F_{0}

Answer (1)

Sol. In air $F=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r_{2}}$
In medium $F^{\prime}=\frac{1}{4 \pi\left(k \epsilon_{0}\right)} \frac{q_{1} q_{2}}{r^{2}}$
$F^{\prime}=\frac{F_{0}}{K}$
16. Two vector each of magnitude A are inclined at angle θ with each other, then magnitude of resultant vector is
(1) $A \cos ^{2} \frac{\theta}{2}$
(2) $2 A \cos \frac{\theta}{2}$
(3) $2 A \cos \theta$
(4) $A \cos \frac{\theta}{2}$

Answer (2)

Sol. The magnitude of resultant vector (R)
$=\sqrt{a^{2}+b^{2}+2 a b \cos \theta}$
here $a=b=A$
then $R=\sqrt{A^{2}+A^{2}+2 A^{2} \cos \theta}$

$$
=A \sqrt{2} \sqrt{1+\cos \theta}
$$

$$
=\sqrt{2} A \sqrt{2 \cos ^{2} \frac{\theta}{2}}
$$

$$
=2 A \cos \frac{\theta}{2}
$$

17. Statement 1 : Electric and magnetic energy density in electromagnetic waves are equal.

Statement 2 : Electromagnetic waves exert pressure on a surface.
(1) Statement 1 is true \& Statement 2 is true and is correct explanation of Statement 1
(2) Statement 1 is true \& Statement 2 is true but is not correct explanation of Statement 1
(3) Statement 1 is true but Statement 2 is false
(4) Statement 1 is false but Statement 2 is true

Answer (2)
Sol. $\frac{1}{2} \varepsilon_{0} E^{2}=\frac{B^{2}}{2 \mu_{0}}$
$\because E=C B$ and $C=\frac{1}{\mu_{0} \varepsilon_{0}}$
18. A pendulum completes 50 oscillations in 40 seconds. If the length of pendulum is $(20 \pm 0.2) \mathrm{cm}$ and resolution of watch is 1 second, find the percentage error in calculation of g.
(1) 7%
(2) 3%
(3) 6%
(4) 4%

Answer (3)
Sol. $T=2 \pi \sqrt{\frac{l}{g}}$

$$
\begin{aligned}
g & =\frac{4 \pi^{2} l}{T^{2}} \\
\frac{\Delta g}{g} & =\frac{\Delta l}{l}+\frac{2 \Delta T}{T} \\
& =\frac{0.2}{20}+2\left(\frac{1}{40}\right) \\
& =6 \%
\end{aligned}
$$

19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. The period of oscillation of system shown below is $\pi \sqrt{\frac{\alpha m}{5 k}}$ then α is \qquad

Answer (12)

Sol. $k_{e q}=\frac{2 k \cdot k}{3 k}+k=\frac{5 k}{3}$
Angular frequency of oscillation $(\omega)=\sqrt{\frac{k_{e q}}{m}}$
$\omega=\sqrt{\frac{5 k}{3 m}}$

$$
\text { Period of oscillation }(\tau)=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{3 m}{5 k}}
$$

22. In the given circuit, $r=2 \Omega$. The power dissipated in the circuit is \qquad W.

Answer (2)

Sol. $R_{\text {eq }}=r$
$\therefore \quad P=\frac{V^{2}}{r}=\frac{4}{2}=2 \mathrm{~W}$
23. A body of mass m is projected with speed u at angle 45° with horizontal. The angular momentum of body, about point of projection when body is at highest point, is $\frac{\sqrt{2} m u^{3}}{x g}$ find x,

Answer (8)
Sol. $L=m u \cos \theta \frac{u^{2} \sin ^{2} \theta}{2 g}$
$=m u^{3} \frac{1}{4 \sqrt{2} g} \Rightarrow x=8$
24. Mass of moon is $\frac{1}{81}$ times the mass of a planet and radius is $\frac{1}{9}$ times the radius of the planet. The ratio of escape speed from planet to escape speed from moon is \qquad -
Answer (3)
Sol. $v_{\text {esc }}=\sqrt{\frac{2 G M}{R}}$
\Rightarrow Ratio $=\sqrt{\frac{81}{9}}=3$
25. Find the mass number of an atom whose radius is half of that of a given atom of mass number 192.
Answer (24)
Sol. $r=R_{0}(192)^{\frac{1}{3}}$

$$
\begin{aligned}
& \frac{r}{2}=R_{0}(m)^{\frac{1}{3}} \\
& m=\frac{192}{8}=24
\end{aligned}
$$

26.
27.
28.
29.
30.
