PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. Two rings of equal radius R arranged perpendicular to each other with common centre at C, carrying equal current I. Find magnetic field at C.

(1) $\frac{\mu_{0} l}{2 R}$
(2) $\frac{\mu_{0} l}{R}$
(3) $\sqrt{2} \frac{\mu_{0} l}{R}$
(4) $\frac{\mu_{0} l}{\sqrt{2} R}$

Answer (4)

Sol. B_{2}

$\vec{B}_{1}=\frac{\mu_{0} I}{2 R} \hat{i}, \vec{B}_{2}=\frac{\mu_{0} I}{2 R} \hat{j}$
$B_{C}=\frac{\mu_{0} I}{\sqrt{2} R}$
2. Find the acceleration of 2 kg block shown in the diagram. (neglect friction)

(1) $\frac{4 g}{15}$
(2) $\frac{2 g}{15}$
(3) $\frac{g}{15}$
(4) $\frac{2 g}{3}$

Answer (1)

Sol. For 2 kg block

$$
\begin{equation*}
T-2 g \sin 37=2 a \tag{i}
\end{equation*}
$$

For 4 kg block
$4 g-2 T=\frac{4 a}{2}$
$2 g-T=a$
$T=(2 g-a)$
$2 g-a-2 g \times \frac{3}{5}=2 a$
$3 a=2 g \times \frac{2}{5}$
$a=\frac{4 g}{15}$
3. A particle of mass m is projected with speed v at an angle of 30° with the horizontal, find its angular momentum about point of projection when it reaches its maximum height.
(1) $\frac{m v^{3}}{16 g}$
(2) $\sqrt{3} \frac{m v^{3}}{16 g}$
(3) $\frac{m v^{3}}{3 g}$
(4) $\sqrt{3} \frac{m v^{3}}{8 g}$

Answer (2)

Sol. Velocity at maximum height $=v \operatorname{coss} 30^{\circ}$

$$
\begin{aligned}
\therefore \quad L & =m(v \cos 30) H \\
& =m v\left(\frac{\sqrt{3}}{2}\right) \times \frac{v^{2} \sin ^{2} 30}{2 g} \\
& =\sqrt{3} \frac{m v^{3}}{16 g}
\end{aligned}
$$

4. The ratio of kinetic energy \& potential energy in $5^{\text {th }}$ excited state of Hydrogen atom is
(1) -2
(2) 2
(3) $-\frac{1}{2}$
(4) $\frac{1}{2}$

Answer (3)

Sol. Kinetic energy: Potential energy $=1:-2$

In given circuit find potential difference across 700Ω resistance (i.e. V_{0}).
(1) 2 V
(2) 0.5 V
(3) 1.1 V
(4) Zero

Answer (3)

Sol. $i=\frac{7}{3.5 k+0.9 \mathrm{k} \Omega}=\frac{7}{4.4 k}$
$V_{0}=i \times 700 \Omega=\frac{7}{4.4 k} \times .7 k=\frac{4.9}{4.4}=1.1 \mathrm{~V}$
6. A ball is released from a height of 1 m on a smooth hemispherical surface as shown. Find its velocity when it is at a height of 0.5 m . (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

(1) $20 \mathrm{~m} / \mathrm{s}$
(2) $10 \mathrm{~m} / \mathrm{s}$
(3) $\sqrt{10} \mathrm{~m} / \mathrm{s}$
(4) $5 \mathrm{~m} / \mathrm{s}$

Answer (3)

Sol. By conservation of mechanical energy
$m g(1)=\frac{1}{2} m v^{2}+m g(0.5)$
$v^{2}=10$
$v=\sqrt{10} \mathrm{~m} / \mathrm{s}$
7. Find current through zener diode if its breakdown voltage is 5 V .

(1) 58.33 mA
(2) 25 mA
(3) 28.33 mA
(4) 20.23 mA

Answer (1)

Sol. $i_{\text {battery }}=\frac{(20-5)}{200}=\frac{15}{200} \mathrm{~A}$
$i_{300 \Omega}=\frac{5}{300} \mathrm{~A}$
$\therefore i_{\text {zener }}=\frac{15}{200}-\frac{5}{300}$
$=58.33 \mathrm{~mA}$
8. Ball released from height 10 m strikes ground and rebounds height 5 m . Find impulse imparted by ground while collision, given mass of ball is 100 g . (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
(1) $(\sqrt{2}-1) \mathrm{Ns}$
(2) $(\sqrt{2}+2) \mathrm{Ns}$
(3) $(2 \sqrt{2}-1) \mathrm{Ns}$
(4) $(\sqrt{2}+1) \mathrm{Ns}$

Answer (4)

Sol. $v_{1}=\sqrt{2 g 10}$
$v_{2}=\sqrt{2 g 5}$
$\vec{I}=\Delta \vec{p}$
$I=0.1\{\sqrt{2 g 10}+\sqrt{2 g 5}\}$

$$
=0.1\{10 \sqrt{2}+10\}
$$

$$
=(\sqrt{2}+1) \mathrm{Ns}
$$

9. Potential due to electric dipole on axial position at distance r from dipole is proportional to (assume $r \gg$ length of dipole)
(1) $\frac{1}{r}$
(2) $\frac{1}{r^{3}}$
(3) $\frac{1}{r^{2}}$
(4) r

Answer (3)
Sol.

$|E|=\frac{2 k P}{r^{3}}$
$E=-\frac{d v}{d r}, v \propto \frac{1}{r^{2}}$
10. Maximum wavelength of light source such that photoelectron can be ejected from material of work function 3 eV is
(1) $2133.3 \AA$
(2) $3133.3 \AA$
(3) $4133.3 \AA$
(4) $313.3 \AA$

Answer (3)

Sol. $\lambda=\frac{12400}{3}=4133.3 \AA$
11. A long wire carrying current $\sqrt{2} A$ is placed in uniform magnetic field of $3 \times 10^{-5} \mathrm{~T}$. If magnetic field is perpendicular to wire, find the magnetic force on unit length of wire.
(1) $3 \times 10^{-4} \mathrm{~N}$
(2) $3 \sqrt{2} \times 10^{-5} \mathrm{~N}$
(3) $3 \times 10^{3} \mathrm{~N}$
(4) Zero

Answer (2)

Sol. $\sqrt{2} A$

$F=i L B \sin \theta$
$=\sqrt{2} \times 1 \times 3 \times 10^{-5} \times \sin 90$
$F=3 \sqrt{2} \times 10^{-5} \mathrm{~N}$
12. If the area of cross-section is halved and length of wire having young's modulus Y is doubled, then its young's modulus will become
(1) Y
(2) $4 Y$
(3) $\frac{Y}{2}$
(4) $\frac{Y}{4}$

Answer (1)

Sol. Young's modulus is property of material of wire and it is independent of geometrical factors.
13. In an electric transformer, 220 V is applied on primary coil having number of turn 100. Find output current through 3Ω resistance if number of secondary turn is 10.

(1) 4 A
(2) 4.4 A
(3) 2 A
(4) 2.2 A

Answer (2)
Sol. $\frac{V_{1}}{V_{0}}=\frac{N_{1}}{N_{0}} \Rightarrow \frac{220}{V_{0}}=\frac{100}{10}$
$V_{0}=22 \mathrm{~V}$
$\therefore \quad I_{0}=\frac{22}{5}=4.4 \mathrm{~A}$
14. Find the temperature of H_{2} gas at which its $r m s$ speed is equal to that of O_{2} at $47^{\circ} \mathrm{C}$.
(1) $20^{\circ} \mathrm{C}$
(2) $-20^{\circ} \mathrm{C}$
(3) $-253^{\circ} \mathrm{C}$
(4) $17^{\circ} \mathrm{C}$

Answer (3)
Sol. $V_{r m s}=\sqrt{\frac{3 R T}{M}}$
$\frac{T}{2}=\frac{320}{32}$
$T=20 \mathrm{~K}$
$\therefore T=-253^{\circ} \mathrm{C}$
15. In AC circuit with source voltage $\varepsilon=20 \sin 1000 t$ is connected to series $L-R$ circuit whose power factor
is $\frac{1}{\sqrt{2}}$. If $E=25 \sin 2000 t$, the new power factor is
(1) $\frac{2}{\sqrt{5}}$
(2) $\frac{1}{\sqrt{5}}$
(3) $\frac{1}{\sqrt{3}}$
(4) $\sqrt{\frac{3}{5}}$

Answer (2)

Sol.
Old

$$
L \omega=1000 L \quad \Rightarrow L \omega=R
$$

New

$R=1000 L$

$\cos \theta=\frac{R}{Z}$
$=\frac{1000 L}{\sqrt{(1000 L)^{2}+(2000 L)^{2}}}$
$=\frac{1}{\sqrt{1+4}}=\frac{1}{\sqrt{5}}$
16. In an electromagnetic wave the electric field is given as $\vec{E}=E_{0} \sin (\omega t-k z) \hat{i}$ the corresponding magnetic field will be
(1) $E_{0} C \sin (\omega t-k z) \hat{j}$
(2) $\frac{E_{0}}{C} \sin (\omega t-k z) \hat{j}$
(3) $\frac{E_{0}}{C} \cos (\omega t-k z) \hat{i}$
(4) $\frac{E_{0}}{C} \sin (\omega t-k z) \hat{i}$

Answer (2)

Sol. $\vec{E} \times \vec{B}$ is along $+z$ axis

$$
B_{0}=\frac{E_{0}}{C}
$$

$\therefore \quad B=\frac{E_{0}}{C} \sin (\omega t-k z) \hat{j}$
17. At a point away from planet of radius 6400 km , the gravitational potential and field are $-6.4 \times 10^{7} \mathrm{SI}$ units and 6.4 SI units respectively. Find height of that point above surface of planet.
(1) 3000 km
(2) 6400 km
(3) 3600 km
(4) 9400 km

Answer (3)

Sol. $\frac{G M}{r}=6.4 \times 10^{7}$

$$
\begin{align*}
& \begin{array}{l}
\frac{G M}{r^{2}}=6.4 \\
r= \\
\begin{aligned}
6.4 \times 10^{7} \\
6.4
\end{aligned} \\
\quad=10^{7} \mathrm{~m} \\
\\
\quad=10,000 \mathrm{~km} \\
R+h=10,000 \\
h=10,000-6400=3600 \mathrm{~km}
\end{array} \tag{i}
\end{align*}
$$

18. A wire has resistance of 60Ω at temperature $27^{\circ} \mathrm{C}$. When it is connected to a 220 V dc supply, a current 2.75 A flows through it at a certain temperature. Find the value of temperature, if coefficient of thermal resistance (\propto) is $2 \times 10^{-4 / 0} \mathrm{C}$.
(1) $1694^{\circ} \mathrm{C}$
(2) $1500^{\circ} \mathrm{C}$
(3) $1000^{\circ} \mathrm{C}$
(4) $1200^{\circ} \mathrm{C}$

Answer (1)
Sol. Final resistance $(R)=\frac{V}{l}=80 \Omega$
then, $R=R_{0}(1+\propto \Delta T)$
$80=60\left(1+2 \times 10^{-4} \Delta T\right)$
$\Delta T=1666.67$
T-27
$T=1693.66$
$=1694^{\circ} \mathrm{C}$
19. Match the two columns.

	Column 1		Column 2
P.	Surface tension	1.	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
Q.	Viscosity	2.	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
R.	Angular momentum	3.	$\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$
S.	Rotational kinetic energy	4.	$\left[\mathrm{ML}^{0} \mathrm{~T}^{-2}\right]$

(1) $P-1, Q-2, R-3, S-4$
(2) $\mathrm{P}-4, \mathrm{Q}-3, \mathrm{R}-2, \mathrm{~S}-1$
(3) $\mathrm{P}-1, \mathrm{Q}-3, \mathrm{R}-4, \mathrm{~S}-2$
(4) $\mathrm{P}-4, \mathrm{Q}-2, \mathrm{R}-1, \mathrm{~S}-3$

Answer (2)
Sol. $S=\frac{F}{L}$

$$
\begin{aligned}
& \Rightarrow[S]=\left[\mathrm{MT}^{-2}\right] \\
& F=n A \frac{d v}{d x} \\
& \Rightarrow \eta \equiv \frac{\mathrm{MLT}^{-2} \cdot \mathrm{~T}}{\mathrm{~L}^{2}}=\mathrm{ML}^{-1} \mathrm{~T}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{L}=\vec{r} \times \vec{p} \\
& \Rightarrow L \equiv\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right] \\
& \mathrm{KE}=\frac{1}{2} / \omega^{2} \\
& \Rightarrow \mathrm{KE} \equiv \mathrm{ML}^{2} \mathrm{~T}^{-2}
\end{aligned}
$$

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. A block of mass 2 kg is placed on a disc which is rotating at constant angular velocity $4 \mathrm{rad} / \mathrm{s}$. Find the friction force (in N) between block and disc if block is not sliding.

Answer (32)
Sol. Block is not slipping, so
$f=m r \omega^{2}=2 \times 1 \times 16=32$
22. Distance between virtual image, which is of twice of size of object placed in front of mirror and object is 45 cm . Magnitude of focal length of mirror is
\qquad cm .
Answer (30)

Sol.

$|m|=\left|\frac{v}{u}\right|=2$
$|v|=|2 u|$
$n+2 n=45$
$n=15 \mathrm{~cm}$
$u=-15$
$v=30$
$\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
$\frac{1}{30}+\frac{1}{-15}=\frac{1}{f}$
$\frac{1-2}{30}=\frac{-1}{30}=\frac{1}{f}$
$\Rightarrow f=30 \mathrm{~cm}$
23. A particle is having uniform acceleration. If its displacement from t to $(t+1)$ second is 120 m and change in velocity is $50 \mathrm{~m} / \mathrm{s}$. Find its displacement (in m) in $(t+2)$ second.

Answer (170)

Sol. $\Delta v=a(t+1-t)$
$\therefore \quad a=50 \mathrm{~m} / \mathrm{s}^{2}$
$s=u+\frac{a}{2}(2(t+1)-1)$
$120=u+\frac{50}{2}(2 t+1)$
$\therefore \quad u=120-25(2 t+1)$
In $(t+2)^{\text {th }}$ second
$s^{\prime}=u+\frac{a}{2}(2(t+2)-1)$
$=u+25(2 t+3)$
$=120-25(2 t)-25+25(2 t)+75$
$s^{\prime}=170 \mathrm{~m}$
24. A uniform disc of mass 5 kg and radius 2 m is rotating with $10 \mathrm{rad} / \mathrm{s}$. Now another identical disc is gently placed on first disc. Because of friction, both disc acquire common angular velocity. Loss of kinetic energy in process is \qquad J.

Answer (250)
Sol. COAM gives $I \omega_{0}=2 / \omega$
$\omega=\frac{\omega_{0}}{2}$
Loss in KE $=\frac{1}{2} l \omega_{0}^{2}-\frac{1}{2}(2 l)\left(\frac{\omega_{0}}{2}\right)^{2}$
$=\frac{1}{4} / \omega_{0}^{2}$
$=\frac{1}{4} \times 5 \times \frac{2}{2} \times 100=250 \mathrm{~J}$
25. Two cell one of emf 8 V , internal resistance 2Ω and other of emf 2 V and internal resistance 4Ω are connected as shown in figure.
Find potential difference (in V) across point $A C$.

Answer (0)

Sol. Current in circuit (I) $=\frac{8-2}{6}=1 \mathrm{~A}$.
So, $V_{C}-4(1)-2+8-2(1)=V_{A}$
$V_{C}-6-2+8=V_{A}$
$V_{C}-V_{A}=0 V$
26. Electron in an hydrogen atom is excited to an energy level having energy -0.85 eV . Find the number of possible transitions it can make while deexcitation.
Answer (6)
Sol. $-0.85=\frac{-13.6}{n^{2}}$
$n=4$
$\therefore \quad$ Number of transitions $=\frac{4 \times 3}{2}=6$
27. Energy stored in circuit 1 is E. If capacitors in circuit 1 and circuit 2 are connected in parallel as shown, the energy stored becomes $\frac{x E}{6}$, find x.

Circuit 1

Answer (50)
Sol. Charge on $C_{1}=C V$
Charge on $C_{2}=4 \mathrm{CV}$
When connected in parallel
$V_{c}=\frac{5 \mathrm{~V}}{3}$
$\therefore \quad Q_{1}^{\prime}=\frac{5}{3} C V, \quad Q_{2}^{\prime}=\frac{10}{3} C V$
$\because \quad E=\frac{1}{2} C V^{2}$
$E^{\prime}=\frac{25}{18} C V^{2}+\frac{25}{9} C V^{2}$
$\frac{25}{6} C V^{2}=\frac{50 E}{6}$
$\therefore \quad x=50$
28.

If wire $B C$ has Young's modulus of $Y=2 \times 10^{11}$ $\mathrm{N} / \mathrm{m}^{2}$ and cross section area of $5 \times 10^{-4} \mathrm{~cm}^{2}$. Find strain in wire $B C$ (in unit of 10^{-4})
Answer (20)
Sol. $a=\frac{3}{9} g$, For $C, 3 g-T=3 a=(3) \frac{3}{9} g$

$$
T=2 g=20 \mathrm{~N}
$$

$\frac{\sigma}{\epsilon}=Y$
$\frac{\sigma}{Y}=\epsilon \Rightarrow \frac{20}{5 \times 10^{-8} \times 2 \times 10^{11}}$
$=2 \times 10^{-3}$
$=20 \times 10^{-4} \Rightarrow 20$
29.
30.

