Å

<mark>∛</mark>Saral

Revision Notes

Class 10 – Maths

Chapter 2 – Polynomials

• If p(x) is a polynomial in x, the degree of the polynomial p(x) is the largest power of x in p(x).

• Types of Polynomials:

- a) A linear polynomial is a polynomial with degree one.
- b) A quadratic polynomial is a polynomial with degree two.
- c) A cubic polynomial is a polynomial with degree three.

• Zeros of a Polynomial:

If p(x) is a polynomial in x and k is any real number, the value obtained by substituting k for x in p(x) is known as the value of p(x) when x = kand is denoted by p(k). If p(k) = 0, a real number k is said to be a zero of a polynomial p(x).

• The Geometrical Meaning of Polynomial Zeros:

<mark>∛</mark>Saral

Å

The equation ax² + bx + c can have three cases for the graphs
a) Case (i):

Here, the graph cuts x-axis at two distinct points A and A'.

b) Case (ii): Here, the graph cuts the x-axis at exactly one point.

∛Saral

Å

c) Case (iii): Here, the graph is either completely above the x-axis or completely below the x-axis.

Class 10 Maths Revision Notes chap. 2 www.esaral.com

Å

∛Saral

- If α and β are the zeroes of the quadratic polynomial $p(x) = ax^2 + bx + c$, $a \neq 0$, then it is known that $x \alpha$ and $x \beta$ are the factors of p(x).
 - a) $A + \beta = -\frac{b}{a}$

b)
$$\alpha\beta = \frac{c}{a}$$

• Division Algorithm for Polynomials:

- If p(x) and g(x) are any two polynomials with $g(x) \neq 0$, then polynomials q(x) and $p(x) = g(x) \times q(x) + r(x) r(x)$ can be found such that , where r(x) = 0 or degree of r(x) < degree of g(x).
- This result is known as the Division Algorithm for polynomials.
- An example would make it easier to understand. So, consider a cubic polynomial x³ 3x² x + 3.
- Assuming that one of its zeroes is 1, it is clear that x 1 is a factor of x³ 3x² x + 3.
- So, $x^3 3x^2 x + 3$ can be divided by x 1. Taking out this factor, $(x - 1)(x^2 - 2x - 3)$.

∛Saral

Å

- Next, get the factors of $x^2 2x 3$ by splitting the middle term. (x + 1)(x - 3). $x^3 - 3x^2 - x + 3 = (x - 1)(x + 1)(x - 3)$
- So, all the three zeroes of the cubic polynomial are 1, -1, 3.

Class 10 Maths Revision Notes chap. 2