Revision Notes

Class 10 - Maths

Chapter 2 - Polynomials

- If $\mathrm{p}(\mathrm{x})$ is a polynomial in x , the degree of the polynomial $\mathrm{p}(\mathrm{x})$ is the largest power of x in $\mathrm{p}(\mathrm{x})$.

- Types of Polynomials:

a) A linear polynomial is a polynomial with degree one.
b) A quadratic polynomial is a polynomial with degree two.
c) A cubic polynomial is a polynomial with degree three.

- Zeros of a Polynomial:

If $p(x)$ is a polynomial in x and k is any real number, the value obtained by substituting k for x in $p(x)$ is known as the value of $p(x)$ when $x=k$ and is denoted by $\mathrm{p}(\mathrm{k})$. If $\mathrm{p}(\mathrm{k})=0$, a real number k is said to be a zero of a polynomial $\mathrm{p}(\mathrm{x})$.

- The Geometrical Meaning of Polynomial Zeros:

- The equation $a x^{2}+b x+c$ can have three cases for the graphs
a) Case (i):

Here, the graph cuts x -axis at two distinct points A and A^{\prime}.

b) Case (ii): Here, the graph cuts the x -axis at exactly one point.

c) Case (iii): Here, the graph is either completely above the x-axis or completely below the x -axis.

- If α and β are the zeroes of the quadratic polynomial $p(x)=a x^{2}+b x+c, a \neq 0$, then it is known that $x-\alpha$ and $x-\beta$ are the factors of $\mathrm{p}(\mathrm{x})$.
a) $A+\beta=-\frac{b}{a}$
b) $\alpha \beta=\frac{c}{a}$
- Division Algorithm for Polynomials:
- If $p(x)$ and $g(x)$ are any two polynomials with $g(x) \neq 0$, then polynomials $\mathrm{q}(\mathrm{x})$ and $\mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x}) \mathrm{r}(\mathrm{x})$ can be found such that, where $r(x)=0$ or degree of $r(x)<$ degree of $g(x)$.
- This result is known as the Division Algorithm for polynomials.
- An example would make it easier to understand. So, consider a cubic polynomial $\mathrm{x}^{3}-3 \mathrm{x}^{2}-\mathrm{x}+3$.
- Assuming that one of its zeroes is 1 , it is clear that $\mathrm{x}-1$ is a factor of $x^{3}-3 x^{2}-x+3$.
- So, $x^{3}-3 x^{2}-x+3$ can be divided by $x-1$. Taking out this factor, $(x-1)\left(x^{2}-2 x-3\right)$.
- Next, get the factors of $x^{2}-2 x-3$ by splitting the middle term. $(x+1)(x-3)$.
$\mathrm{x}^{3}-3 \mathrm{x}^{2}-\mathrm{x}+3=(\mathrm{x}-1)(\mathrm{x}+1)(\mathrm{x}-3)$
- So, all the three zeroes of the cubic polynomial are $1,-1,3$.

