Revision Notes

Class - 10 Maths

Chapter 1 - Real Numbers

- Real numbers:
- All rational and irrational numbers taken together make the real numbers. On the number line, any real number can be plotted.

- Euclid's Division Lemma:

- A lemma is a verified statement that is utilised to prove another. Euclid's Division Lemma states that for any two integers a and b, there exists a unique pair of integers q and r such that $a=b \times q+r$ where $0 \leq r<b$.
- The lemma can be simply stated as :

Dividend $=$ Divisor \times Quotient + Remainder

- For any pair of dividend and divisor, the quotient and remainder obtained are going to be unique.

- Euclid's Division Algorithm:

- An algorithm is a set of well-defined steps that describe how to solve a certain problem. The Highest Common Factor (HCF) of two positive integers is computed using Euclid's division algorithm.
- Follow the steps below to find the HCF of two positive integers, say c and d, with c>d:
Step 1: We apply Euclid's Division Lemma to find two integers q and r such that $\mathrm{c}=\mathrm{d} \times \mathrm{q}+\mathrm{r}$ where $0 \leq \mathrm{r}<\mathrm{d}$.
Step 2: If $r=0$, the H.C.F is d, else, we apply Euclid's division Lemma to d (the divisor) and r (the remainder) to get another pair of quotient and remainder.
Step 3: Repeat Steps 1-3 until the remainder is zero. The needed HCF will be the divisor at the last step.

- The Fundamental Theorem of Arithmetic:

The process of expressing a natural number as a product of prime numbers is known as prime factorization.
Apart from the sequence in which the prime components occur, the prime factorisation for a given number is unique.

Example: $12=2 \times 2 \times 3$, here 12 is represented as a product of its prime factors 2 and 3 .

- Finding LCM and HCF:

- HCF is the product of the smallest power of each common prime factor in the given numbers.
- LCM is the product of the greatest power of each prime factor, involved in the given numbers.
- For any two positive integers a and b, $\operatorname{HCF}(\mathrm{a}, \mathrm{b}) \times \operatorname{LCM}(\mathrm{a}, \mathrm{b})=\mathrm{a} \times \mathrm{b}$
- L.C.M can be used to find common occurrence sites. For instance, the time when two people running at different speeds meet, or the ringing of bells with various frequencies.

- Rational and Irrational numbers:

- If a number can be expressed in the form p / q where p and q are integers and $q \neq 0$, then it is called a rational number.
- If a number cannot be expressed in the form p / q where p and q are integers and $\mathrm{q} \neq 0$, then it is called an irrational number.

- Number Theory:

- If p (a prime number) divides a^{2}, then p divides a as well. For example, 3 divides 6^{2}, resulting in 36, implying that 3 divides 6 .
- The sum or difference of a rational and an irrational number is irrational
- A non-zero rational and irrational number's product and quotient are both irrational.
- $\sqrt{\mathrm{p}}$ is irrational when p is a prime number. For example, 7 is a prime number and $\sqrt{7}$ is irrational. The preceding statement can be proven by the process of "Proof by contradiction".

- Decimal Expansions of Rational Numbers:

- Let $x=\frac{p}{q}$ be a rational number with the prime factorization $2^{n} 5^{m}$, where n and m are non-negative integers. The decimal expansion of x then comes to an end. Then x has a non-terminating repeated decimal expansion (recurring).
- If $\frac{a}{b}$ is a rational number, then its decimal expansion would terminate if both of the following conditions are satisfied :
a) The H.C.F of a and b is 1 .
b) b can be expressed as a prime factorisation of 2 and 5 i.e in the form $2^{\mathrm{n}} 5^{\mathrm{m}}$ where either m or n , or both can be zero.
- If the prime factorisation of b contains any number other than 2 or 5, then the decimal expansion of that number will be recurring

