Å

∛Saral

Revision Notes

Class - 10 Maths

Chapter 4 - Quadratic Equation

Definition of quadratic equation:

- A quadratic equation in the variable x is an equation of the form $ax^2 + bx + c = 0$, where a, b, c are real numbers, $a \neq 0$.
- For example, $2x^2 + x 300 = 0$ is a quadratic equation

Standard form of quadratic equation:

- Any equation of the form p(x)=0, where p(x) is a polynomial of degree 2, is a quadratic equation.
- When we write the terms of p(x) in descending order of their degrees, then we get the standard form of the equation.
- That is, ax² + bx + c, a ≠ 0 is called the standard form of a quadratic equation.

Roots of quadratic equation:

- A solution of the equation p(x)=ax²+bx+c=0, with a≠0 is called a root of the quadratic equation.
- A real number α is called a root of the quadratic equation $ax^2 + bx + c = 0$, $a \neq 0$ if $a\alpha^2 + b\alpha + c = 0$.
- It means $x=\alpha$ satisfies the quadratic equation or $x=\alpha$ is the root of quadratic equation.
- The zeroes of the quadratic polynomial $ax^2 + bx + c$ and the roots of the quadratic equation $ax^2 + bx + c = 0$ are the same.

Method of solving a quadratic equation:

1. Factorization method

a. Factorize the quadratic equation by splitting the middle term.

Class 10 Maths Revision Notes chap. 4 www.esaral.com

∛Saral

Å

- b. After splitting the middle term, convert the equation into linear factors by taking common terms out.
- c. Then on equating each factor to zero the roots are determined.
- d. For example:

 $\Rightarrow 2x^{2} - 5x + 3 \qquad \text{(Split the middle term)} \\\Rightarrow 2x^{2} - 2x - 3x + 3 \qquad \text{(Take out common terms to determine linear factors)} \\\Rightarrow 2x(x-1) - 3(x-1) \\\Rightarrow (x-1)(2x-3) \qquad \text{(Equate to zero)} \\\Rightarrow (x-1)(2x-3) = 0 \\\text{When } (x-1) = 0 , x = 1 \\\text{When } (2x-3) = 0 , x = \frac{3}{2} \\\text{So, the roots of } 2x^{2} - 5x + 3 \text{ are 1 and } \frac{3}{2} \end{aligned}$

2. Method of completing the square

- a. The solution of quadratic equation can be found by converting any quadratic equation to perfect square of the form $(x + a)^2 b^2 = 0$.
- b. To convert quadratic equation $x^2 + ax + b = 0$ to perfect square equate b i.e., the constant term to the right side of equal sign then add square of half of a i.e., square of half of coefficient of x both sides.
- c. To convert quadratic equation of form $ax^2 + bx + c = 0$, $a \neq 0$ to perfect square first divide the equation by a i.e., the coefficient of x^2 then follow the above-mentioned steps.
- d. For example:

 $\Rightarrow x^{2} + 4x - 5 = 0 \text{ (Equate constant term 5 to the right of equal sign)}$ $\Rightarrow x^{2} + 4x = 5 \text{ (Add square of half of 4 both sides)}$ $\Rightarrow x^{2} + 4x + \left(\frac{4}{2}\right)^{2} = 5 + \left(\frac{4}{2}\right)^{2}$ $\Rightarrow x^{2} + 4x + 4 = 9$ $\Rightarrow (x + 2)^{2} = 9$ $\Rightarrow (x + 2)^{2} - (3)^{2} = 0$ It is of the form $(x + a)^{2} - b^{2} = 0$ Now,

Class 10 Maths Revision Notes chap. 4 www.esaral.com

∛Saral

$$\Rightarrow (x+2)^{2} - (3)^{2} = 0$$

$$\Rightarrow (x+2)^{2} = 9$$

$$\Rightarrow (x+2) = \pm 3$$

$$\Rightarrow x = 1 \text{ and } x = -5$$

So, the roots of $x^{2} + 4x - 5 = 0$ are 1 and -5

3. By using quadratic formula

- a. The root of a quadratic equation $ax^2 + bx + c = 0$ is given by formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, where $\sqrt{b^2 - 4ac}$ is known as **discriminant**.
- b. If $\sqrt{b^2 4ac} \ge 0$ then only the root of quadratic equation is given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
- c. For example: $\Rightarrow x^2 + 4x + 3$ On using quadratic formula, we get

 $\Rightarrow x = \frac{-4 \pm \sqrt{(4)^2 - 4 \times 1 \times 3}}{2 \times 1}$ $\Rightarrow x = \frac{-4 \pm \sqrt{16 - 12}}{2}$ $\Rightarrow x = \frac{-4 \pm \sqrt{4}}{2}$ $\Rightarrow x = \frac{-4 \pm \sqrt{4}}{2}$ $\Rightarrow x = \frac{-4 \pm 2}{2}$

$$\Rightarrow x = \frac{-4+2}{2}, x = -1$$
$$\Rightarrow x = \frac{-4-2}{2}, x = -3$$

So, the roots of $x^2 + 4x + 3 = 0$ are -1 and -3

Nature of roots based on discriminant:

a. If $\sqrt{b^2 - 4ac} = 0$ then the roots are **real and equal**

∛Saral

Å

- b. If $\sqrt{b^2 4ac} > 0$ then the roots are **real and distinct** c. If $\sqrt{b^2 4ac} < 0$ then the roots are **imaginary**