Revision Notes

Class 10 Mathematics

Chapter 7 - Co-ordinate Geometry

Important Terms and Concepts:

- "The coordinate axes are of perpendicular lines " XOX " and " YOY " intersecting at O ."
- The plane is divided into four quadrants by the axes.
- The Cartesian plane is the plane that contains the axes.
- The lines " XOX " and " YOY " are known as the x-axis and y-axis, respectively, and are commonly drawn horizontally and vertically as seen in the picture.
- O , is the Point of Intersection of the axes which is known as origin.
- Abscissae are the values of x measured along the x -axis from O . x has positive values along OX , but negative values along OX^{\prime}.
- Similarly, ordinate refers to the values of y measured along the y axis from O.
- y has positive values along OY, but negative values along OY'.
- The coordinates of a point are the ordered pair containing the abscissa and ordinate of a point.

Distance Formula:

- To find the distance two points $\underset{\text { www.esaral.com }}{\mathrm{A}} \underset{\left.\text { (} \mathrm{x}_{1}, \mathrm{y}_{1}\right)}{\mathrm{in}}$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ Class 10 Maths Revision Notes chap. 7 www.esaral.com

- From The Figure,
$\mathrm{AC}=\mathrm{x}_{2}-\mathrm{x}_{1}$
$B C=y_{2}-y_{1}$
Therefore, In $\triangle \mathrm{ABC}$,
By using the Pythagoras Theorem, we get

$$
\begin{aligned}
& A B^{2}=A C^{2}+B C^{2} \\
& A B^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
& A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{aligned}
$$

Section Formula:

- To find the coordinates of a point which divides the line segment joining two given points in a given ratio (internally).

- Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ divide the join of $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ in the Ratio m:n. Here,

$$
\angle \mathrm{PAC}=\angle \mathrm{BPD}
$$

$\angle \mathrm{PCA}=\angle \mathrm{BDP}=90^{\circ}$
Therefore, by using AA similarity method, we get
$\mathrm{AC}=\mathrm{x}-\mathrm{x}_{1}$
$\mathrm{PD}=\mathrm{x}_{2}-\mathrm{x}$
From Similarity Property, we get

$$
\begin{aligned}
\frac{\mathrm{AC}}{\mathrm{PD}} & =\frac{\mathrm{m}}{\mathrm{n}} \\
& =\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{x}_{2}-\mathrm{x}} \\
& =\frac{m}{\mathrm{n}}
\end{aligned}
$$

Now, make x the subject of the formula,

$$
\begin{aligned}
\mathrm{nx}-\mathrm{nx}_{1} & =\mathrm{mx}_{2}-\mathrm{mx} \\
\mathrm{Mx}+\mathrm{nx} & =\mathrm{mx}_{2}+\mathrm{nx}_{1} \\
\mathrm{X}(\mathrm{~m}+\mathrm{n}) & =\mathrm{mx}_{2}+\mathrm{nx}_{1}
\end{aligned}
$$

Therefore,

$$
\mathrm{X}=\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}
$$

Similarly, we can show that
$\mathrm{Y}=\frac{\mathrm{my}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}$
Thus, the Co-ordinate of Pare $\left(\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{my}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}\right)$.

Mid-Point Formula:

- If P is the mid-point of $A B$, then $m: n$,

Therefore, the ratio becomes $1: 1$
And hence,

$$
\begin{aligned}
& X=\frac{m x_{2}+n x_{1}}{m+n} \\
& X=\frac{x_{2}+x_{1}}{1+1} \\
& X=\frac{x_{2}+x_{1}}{2}
\end{aligned}
$$

Similarly, we get

$$
\mathrm{Y}=\frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}
$$

Thus, the Co-ordinate of Pare $\underline{x_{1}+x_{2}}, \underline{y_{1}+y_{2}}$

- Note:

When the point P divides the line joining AB in the ration $\mathrm{m}: \mathrm{n}$ externally then,
The Co-ordinate of P are $\frac{\mathrm{mx}_{2}-\mathrm{nx}_{1}}{\mathrm{~m}-\mathrm{n}}, \frac{\mathrm{my}_{2}-\mathrm{ny}_{1}}{\mathrm{~m}-\mathrm{n}}$

Centroid of a Triangle:

- Centroid is the point of intersection of three medians.
- It is the point of intersection of a median
- AG: GD is $2: 1$

To find the coordinates of the centroid of a triangle:
Let the coordinates of the vertices of $\triangle \mathrm{ABC}$ be $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$

Let $G(x, y)$ be the centroid of the $\triangle A B C$
Here, D is the midpoint of BC , and hence
By applying the mid-point formula, we get
$\mathrm{a}=\frac{\mathrm{x}_{2}+\mathrm{x}_{3}}{2}$ and $\mathrm{b}=\frac{\mathrm{y}_{2}+\mathrm{y}_{3}}{2}$
We know that,
In a $2: 1$ ratio, point G splits the median.

Therefore, by applying the section formula, we get
$\mathrm{X}=\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}$
$X=\frac{2(\mathrm{a})+1\left(\mathrm{x}_{1}\right)}{2+1}$
$X=\frac{2\left(\frac{x_{2}+x_{3}}{2}\right)+x_{1}}{3}$
$X=\frac{x_{1}+x_{2}+x_{3}}{3}$
Similarly,
$\mathrm{Y}=\frac{2(\mathrm{~b})+1\left(\mathrm{y}_{1}\right)}{2+1}$
$\mathrm{Y}=\frac{2\left(\frac{\mathrm{y}_{2}+\mathrm{y}_{3}}{2}\right)+\mathrm{y}_{1}}{3}$
$\mathrm{Y}=\frac{\mathrm{y}_{1}+\mathrm{y}_{3}+\mathrm{y}_{3}}{3}$
Therefore, Coordinates of the centroid are $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$

Area of the Triangle:

To find the area of triangle whose vertices are $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$

Let, $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ be the vertices of a triangle $\triangle \mathrm{ABC}$ Area of $\triangle \mathrm{ABC}$
$=$ Area of Trapezium ABML + Area of Trapezium ALNC

- Area of Trapezium BMNC
$=\frac{1}{2} \mathrm{ML}(\mathrm{MB}+\mathrm{LA})+\frac{1}{2} \mathrm{LN}(\mathrm{LA}+\mathrm{NC})-\frac{1}{2} \mathrm{MN}(\mathrm{MB}+\mathrm{NC})$
$=\frac{1}{2}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\left(\mathrm{y}_{2}+\mathrm{y}_{1}\right)+\frac{1}{2}\left(\mathrm{x}_{3}-\mathrm{x}_{1}\right)\left(\mathrm{y}_{1}+\mathrm{y}_{3}\right)-\frac{1}{2}\left(\mathrm{x}_{3}-\mathrm{x}_{2}\right)\left(\mathrm{y}_{2}+\mathrm{y}_{3}\right)$
$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$

Arrow Method:

It is to obtain the formula for the area of the triangle

$$
\begin{aligned}
& \frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right| \\
& =\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]
\end{aligned}
$$

Note:

1. If the points A, B and C we take in the anticlockwise direction, then the area will be positive.
2. If the points we take in clockwise direction, the area will be negative.
3. So we always take the absolute value of the area calculated.

Therefore,
Area of triangle
$=\frac{1}{-} x_{1}\left(\begin{array}{ll}\mathrm{y}_{2} & \mathrm{y}_{3}\end{array}\right) \quad \mathrm{x}_{2}\left(\begin{array}{ll}\mathrm{y}_{3} & \mathrm{y}_{1}\end{array}\right) \quad \mathrm{x}_{3}\left(\begin{array}{ll}\mathrm{y}_{1} & \mathrm{y}_{2}\end{array}\right)$.
4. If the area of a triangle is zero, then the three points are collinear.

