Class XII : Maths
Chapter 10 : Vector Algebra

Questions and Solutions | Exercise 10.3 - NCERT Books

Question 1:

Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 , respectively having $\vec{a} \cdot \vec{b}=\sqrt{6}$.

Answer
It is given that,
$|\vec{a}|=\sqrt{3},|\vec{b}|=2$ and, $\vec{a} \cdot \vec{b}=\sqrt{6}$
Now, we know that $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$.
$\therefore \sqrt{6}=\sqrt{3} \times 2 \times \cos \theta$
$\Rightarrow \cos \theta=\frac{\sqrt{6}}{\sqrt{3} \times 2}$
$\Rightarrow \cos \theta=\frac{1}{\sqrt{2}}$
$\Rightarrow \theta=\frac{\pi}{4}$
Hence, the angle between the given vectors \vec{a} and \vec{b} is $\frac{\pi}{4}$.

Question 2:

Find the angle between the vectors $\hat{i}-2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$
Answer
The given vectors are $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+\hat{k}$.

$$
\begin{aligned}
& |\vec{a}|=\sqrt{1^{2}+(-2)^{2}+3^{2}}=\sqrt{1+4+9}=\sqrt{14} \\
& |\vec{b}|=\sqrt{3^{2}+(-2)^{2}+1^{2}}=\sqrt{9+4+1}=\sqrt{14} \\
& \text { Now, } \begin{aligned}
& \vec{a} \cdot \vec{b}=(\hat{i}-2 \hat{j}+3 \hat{k})(3 \hat{i}-2 \hat{j}+\hat{k}) \\
&=1.3+(-2)(-2)+3.1 \\
& \quad=3+4+3 \\
& \quad= 10
\end{aligned}
\end{aligned}
$$

$\therefore 10=\sqrt{14} \sqrt{14} \cos \theta$
$\Rightarrow \cos \theta=\frac{10}{14}$
$\Rightarrow \theta=\cos ^{-1}\left(\frac{5}{7}\right)$

Question 3:

Find the projection of the vector $\hat{i}-\hat{j}$ on the vector $\hat{i}+\hat{j}$.
Answer
Let $\vec{a}=\hat{i}-\hat{j}$ and $\vec{b}=\hat{i}+\hat{j}$.
Now, projection of vector $\vec{a}_{\text {on }} \vec{b}$ is given by,
$\frac{1}{|\vec{b}|}(\vec{a} \cdot \vec{b})=\frac{1}{\sqrt{1+1}}\{1.1+(-1)(1)\}=\frac{1}{\sqrt{2}}(1-1)=0$
Hence, the projection of vector $\vec{a}_{\text {on }} \vec{b}$ is 0 .

Question 4:

Find the projection of the vector ${ }^{\hat{i}+3 \hat{j}+7 \hat{k}}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$.
Answer
Let ${ }^{\vec{a}}=\hat{i}+3 \hat{j}+7 \hat{k}$ and $\hat{b}=7 \hat{i}-\hat{j}+8 \hat{k}$.
Now, projection of vector $\vec{a}_{\text {on }} \vec{b}$ is given by,

$$
\frac{1}{|\vec{b}|}(\vec{a} \cdot \vec{b})=\frac{1}{\sqrt{7^{2}+(-1)^{2}+8^{2}}}\{1(7)+3(-1)+7(8)\}=\frac{7-3+56}{\sqrt{49+1+64}}=\frac{60}{\sqrt{114}}
$$

Question 5:

Show that each of the given three vectors is a unit vector:
$\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k}), \frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})$
Also, show that they are mutually perpendicular to each other.

Answer

Let $\vec{a}=\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k})=\frac{2}{7} \hat{i}+\frac{3}{7} \hat{j}+\frac{6}{7} \hat{k}$,
$\vec{b}=\frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k})=\frac{3}{7} \hat{i}-\frac{6}{7} \hat{j}+\frac{2}{7} \hat{k}$,
$\vec{c}=\frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})=\frac{6}{7} \hat{i}+\frac{2}{7} \hat{j}-\frac{3}{7} \hat{k}$.
$|\vec{a}|=\sqrt{\left(\frac{2}{7}\right)^{2}+\left(\frac{3}{7}\right)^{2}+\left(\frac{6}{7}\right)^{2}}=\sqrt{\frac{4}{49}+\frac{9}{49}+\frac{36}{49}}=1$
$|\vec{b}|=\sqrt{\left(\frac{3}{7}\right)^{2}+\left(-\frac{6}{7}\right)^{2}+\left(\frac{2}{7}\right)^{2}}=\sqrt{\frac{9}{49}+\frac{36}{49}+\frac{4}{49}}=1$
$|\vec{c}|=\sqrt{\left(\frac{6}{7}\right)^{2}+\left(\frac{2}{7}\right)^{2}+\left(-\frac{3}{7}\right)^{2}}=\sqrt{\frac{36}{49}+\frac{4}{49}+\frac{9}{49}}=1$
Thus, each of the given three vectors is a unit vector.
$\vec{a} \cdot \vec{b}=\frac{2}{7} \times \frac{3}{7}+\frac{3}{7} \times\left(\frac{-6}{7}\right)+\frac{6}{7} \times \frac{2}{7}=\frac{6}{49}-\frac{18}{49}+\frac{12}{49}=0$
$\vec{b} \cdot \vec{c}=\frac{3}{7} \times \frac{6}{7}+\left(\frac{-6}{7}\right) \times \frac{2}{7}+\frac{2}{7} \times\left(\frac{-3}{7}\right)=\frac{18}{49}-\frac{12}{49}-\frac{6}{49}=0$
$\vec{c} \cdot \vec{a}=\frac{6}{7} \times \frac{2}{7}+\frac{2}{7} \times \frac{3}{7}+\left(\frac{-3}{7}\right) \times \frac{6}{7}=\frac{12}{49}+\frac{6}{49}-\frac{18}{49}=0$
Hence, the given three vectors are mutually perpendicular to each other.

Question 6:
Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$.
Answer
$(\vec{a} \cdot \vec{b}) \cdot(\vec{a}-\vec{b})=8$
$\Rightarrow \vec{a} \cdot \vec{a}-\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}-\vec{b} \cdot \vec{b}=8$
$\Rightarrow|\vec{a}|^{2}-|\vec{b}|^{2}=8$
$\Rightarrow(8|\vec{b}|)^{2}-|\vec{b}|^{2}=8 \quad[|\vec{a}|=8|\vec{b}|]$
$\Rightarrow 64|\vec{b}|^{2}-|\vec{b}|^{2}=8$
$\Rightarrow 63|\vec{b}|^{2}=8$
$\Rightarrow|\vec{b}|^{2}=\frac{8}{63}$
$\Rightarrow|\vec{b}|=\sqrt{\frac{8}{63}} \quad$ [Magnitude of a vector is non-negative]
$\Rightarrow|\vec{b}|=\frac{2 \sqrt{2}}{3 \sqrt{7}}$
$|\vec{a}|=8|\vec{b}|=\frac{8 \times 2 \sqrt{2}}{3 \sqrt{7}}=\frac{16 \sqrt{2}}{3 \sqrt{7}}$

Question 7:

Evaluate the product $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$.
Answer
$(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$
$=3 \vec{a} \cdot 2 \vec{a}+3 \vec{a} \cdot 7 \vec{b}-5 \vec{b} \cdot 2 \vec{a}-5 \vec{b} \cdot 7 \vec{b}$
$=6 \vec{a} \cdot \vec{a}+21 \vec{a} \cdot \vec{b}-10 \vec{a} \cdot \vec{b}-35 \vec{b} \cdot \vec{b}$
$=6|\vec{a}|^{2}+11 \vec{a} \cdot \vec{b}-35|\vec{b}|^{2}$

Question 8:

Find the magnitude of two vectors \vec{a} and \vec{b}, having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$.

Answer

Let θ be the angle between the vectors \vec{a} and \vec{b}.

$$
\begin{equation*}
|\vec{a}|=|\vec{b}|, \vec{a} \cdot \vec{b}=\frac{1}{2} \text {, and } \theta=60^{\circ} \tag{1}
\end{equation*}
$$

It is given that
We know that $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$.
$\therefore \frac{1}{2}=|\vec{a}||\vec{a}| \cos 60^{\circ} \quad[$ Using (1)]
$\Rightarrow \frac{1}{2}=|\vec{a}|^{2} \times \frac{1}{2}$
$\Rightarrow|\vec{a}|^{2}=1$
$\Rightarrow|\vec{a}|=|\vec{b}|=1$

Question 9:
Find $|\vec{x}|$, if for a unit vector $\vec{a},(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=12$.
Answer
$(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=12$
$\Rightarrow \vec{x} \cdot \vec{x}+\vec{x} \cdot \vec{a}-\vec{a} \cdot \vec{x}-\bar{a} \cdot \vec{a}=12$
$\Rightarrow|\vec{x}|^{2}-|\vec{a}|^{2}=12$
$\Rightarrow|\vec{x}|^{2}-1=12 \quad[|\vec{a}|=1$ as \vec{a} is a unit vector $]$
$\Rightarrow|\vec{x}|^{2}=13$
$\therefore|\vec{x}|=\sqrt{13}$

Question 10:

If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}, then find the value of λ.
Answer
The given vectors are $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$, and $\vec{c}=3 \hat{i}+\hat{j}$.
Now,
$\vec{a}+\lambda \vec{b}=(2 \hat{i}+2 \hat{j}+3 \hat{k})+\lambda(-\hat{i}+2 \hat{j}+\hat{k})=(2-\lambda) \hat{i}+(2+2 \lambda) \hat{j}+(3+\lambda) \hat{k}$
If $(\vec{a}+\lambda \vec{b})$ is perpendicular to \vec{c}, then
$(\vec{a}+\lambda \vec{b}) \cdot \vec{c}=0$.
$\Rightarrow[(2-\lambda) \hat{i}+(2+2 \lambda) \hat{j}+(3+\lambda) \hat{k}] \cdot(3 \hat{i}+\hat{j})=0$
$\Rightarrow(2-\lambda) 3+(2+2 \lambda) 1+(3+\lambda) 0=0$
$\Rightarrow 6-3 \lambda+2+2 \lambda=0$
$\Rightarrow-\lambda+8=0$
$\Rightarrow \lambda=8$
Hence, the required value of λ is 8 .

Question 11:

Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any two nonzero vectors \vec{a} and \vec{b}
Answer
$(|\vec{a}| \vec{b}+|\vec{b}| \vec{a}) \cdot(|\vec{a}| \vec{b}-|\vec{b}| \vec{a})$
$=|\vec{a}|^{2} \vec{b} \cdot \vec{b}-|\vec{a}| \vec{b}^{b}|\vec{b} \cdot \vec{a}+|\vec{b}|| \vec{a}\left|\vec{a} \cdot \vec{b}-|\vec{b}|^{2} \vec{a} \cdot \vec{a}\right.$
$=|\vec{a}|^{2}|\vec{b}|^{2}-|\vec{b}|^{2}|\vec{a}|^{2}$
$=0$
Hence, $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ and $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$ are perpendicular to each other.

Question 12:

If $\vec{a} \cdot \vec{a}=0$ and $\vec{a} \cdot \vec{b}=0$, then what can be concluded about the vector \vec{b} ?

Answer

It is given that $\vec{a} \cdot \vec{a}=0$ and $\vec{a} \cdot \vec{b}=0$.
Now,
$\vec{a} \cdot \vec{a}=0 \Rightarrow|\vec{a}|^{2}=0 \Rightarrow|\vec{a}|=0$
$\therefore \vec{a}$ is a zero vector.
Hence, vector \vec{b} satisfying $\vec{a} \cdot \vec{b}=0$ can be any vector.

Question 13:
If \vec{a}, \vec{b}, c are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$ find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.
Answer 13:

$$
\begin{aligned}
& |\vec{a}+\vec{b}+\vec{c}|^{2}=(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c}) \\
& \quad=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}) \\
& \Rightarrow 0=1+1+1+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}) \\
& \quad \Rightarrow(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=\frac{-3}{2}
\end{aligned}
$$

Question 14:

If either vector $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$, then $\vec{a} \cdot \vec{b}=0$. But the converse need not be true. Justify your answer with an example.
Answer
Consider $\vec{a}=2 \hat{i}+4 \hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+3 \hat{j}-6 \hat{k}$.
Then,
$\vec{a} \cdot \vec{b}=2.3+4.3+3(-6)=6+12-18=0$
We now observe that:
$|\vec{a}|=\sqrt{2^{2}+4^{2}+3^{2}}=\sqrt{29}$
$\therefore \vec{a} \neq \overrightarrow{0}$
$|\vec{b}|=\sqrt{3^{2}+3^{2}+(-6)^{2}}=\sqrt{54}$
$\therefore \vec{b} \neq \overrightarrow{0}$
Hence, the converse of the given statement need not be true.

Question 15:

If the vertices A, B, C of a triangle $A B C$ are $(1,2,3),(-1,0,0),(0,1,2)$, respectively, then find $\square A B C$. [$\square \mathrm{ABC}$ is the angle between the vectors $\overrightarrow{\mathrm{BA}}$ and $\overrightarrow{\mathrm{BC}}$]
Answer
The vertices of $\triangle A B C$ are given as $A(1,2,3), B(-1,0,0)$, and $C(0,1,2)$.
Also, it is given that $\square A B C$ is the angle between the vectors $\overrightarrow{B A}$ and $\overrightarrow{B C}$.
$\overrightarrow{\mathrm{BA}}=\{1-(-1)\} \hat{i}+(2-0) \hat{j}+(3-0) \hat{k}=2 \hat{i}+2 \hat{j}+3 \hat{k}$
$\overrightarrow{\mathrm{BC}}=\{0-(-1)\} \hat{i}+(1-0) \hat{j}+(2-0) \hat{k}=\hat{i}+\hat{j}+2 \hat{k}$
$\therefore \overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}=(2 \hat{i}+2 \hat{j}+3 \hat{k}) \cdot(\hat{i}+\hat{j}+2 \hat{k})=2 \times 1+2 \times 1+3 \times 2=2+2+6=10$
$|\overrightarrow{\mathrm{BA}}|=\sqrt{2^{2}+2^{2}+3^{2}}=\sqrt{4+4+9}=\sqrt{17}$
$|\overrightarrow{\mathrm{BC}}|=\sqrt{1+1+2^{2}}=\sqrt{6}$
Now, it is known that:
$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}=|\overrightarrow{\mathrm{BA}}||\overrightarrow{\mathrm{BC}}| \cos (\angle \mathrm{ABC})$.
$\therefore 10=\sqrt{17} \times \sqrt{6} \cos (\angle \mathrm{ABC})$
$\Rightarrow \cos (\angle \mathrm{ABC})=\frac{10}{\sqrt{17} \times \sqrt{6}}$
$\Rightarrow \angle \mathrm{ABC}=\cos ^{-1}\left(\frac{10}{\sqrt{102}}\right)$

Question 16:

Show that the points $A(1,2,7), B(2,6,3)$ and $C(3,10,-1)$ are collinear.
Answer
The given points are $A(1,2,7), B(2,6,3)$, and $C(3,10,-1)$.
$\therefore \overrightarrow{\mathrm{AB}}=(2-1) \hat{i}+(6-2) \hat{j}+(3-7) \hat{k}=\hat{i}+4 \hat{j}-4 \hat{k}$
$\overrightarrow{\mathrm{BC}}=(3-2) \hat{i}+(10-6) \hat{j}+(-1-3) \hat{k}=\hat{i}+4 \hat{j}-4 \hat{k}$
$\overrightarrow{\mathrm{AC}}=(3-1) \hat{i}+(10-2) \hat{j}+(-1-7) \hat{k}=2 \hat{i}+8 \hat{j}-8 \hat{k}$
$|\overrightarrow{\mathrm{AB}}|=\sqrt{1^{2}+4^{2}+(-4)^{2}}=\sqrt{1+16+16}=\sqrt{33}$
$|\overrightarrow{\mathrm{BC}}|=\sqrt{1^{2}+4^{2}+(-4)^{2}}=\sqrt{1+16+16}=\sqrt{33}$
$|\overrightarrow{\mathrm{AC}}|=\sqrt{2^{2}+8^{2}+8^{2}}=\sqrt{4+64+64}=\sqrt{132}=2 \sqrt{33}$
$\therefore|\overrightarrow{\mathrm{AC}}|=|\overrightarrow{\mathrm{AB}}|+|\overrightarrow{\mathrm{BC}}|$
Hence, the given points A, B, and C are collinear.

Question 17:

Show that vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ form the vertices of a right angled triangle.

Answer

Let vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ be position vectors of points A, B, and C respectively.
i.e., $\overrightarrow{\mathrm{OA}}=2 \hat{i}-\hat{j}+\hat{k}, \overrightarrow{\mathrm{OB}}=\hat{i}-3 \hat{j}-5 \hat{k}$ and $\overrightarrow{\mathrm{OC}}=3 \hat{i}-4 \hat{j}-4 \hat{k}$

Now, vectors $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{BC}}$, and $\overrightarrow{\mathrm{AC}}$ represent the sides of $\triangle \mathrm{ABC}$.
i.e., $\overrightarrow{\mathrm{OA}}=2 \hat{i}-\hat{j}+\hat{k}, \overrightarrow{\mathrm{OB}}=\hat{i}-3 \hat{j}-5 \hat{k}$, and $\overrightarrow{\mathrm{OC}}=3 \hat{i}-4 \hat{j}-4 \hat{k}$
$\therefore \overrightarrow{\mathrm{AB}}=(1-2) \hat{i}+(-3+1) \hat{j}+(-5-1) \hat{k}=-\hat{i}-2 \hat{j}-6 \hat{k}$
$\overrightarrow{\mathrm{BC}}=(3-1) \hat{i}+(-4+3) \hat{j}+(-4+5) \hat{k}=2 \hat{i}-\hat{j}+\hat{k}$
$\overrightarrow{\mathrm{AC}}=(2-3) \hat{i}+(-1+4) \hat{j}+(1+4) \hat{k}=-\hat{i}+3 \hat{j}+5 \hat{k}$
$|\overrightarrow{\mathrm{AB}}|=\sqrt{(-1)^{2}+(-2)^{2}+(-6)^{2}}=\sqrt{1+4+36}=\sqrt{41}$
$|\overrightarrow{\mathrm{BC}}|=\sqrt{2^{2}+(-1)^{2}+1^{2}}=\sqrt{4+1+1}=\sqrt{6}$
$|\overrightarrow{\mathrm{AC}}|=\sqrt{(-1)^{2}+3^{2}+5^{2}}=\sqrt{1+9+25}=\sqrt{35}$
$\therefore|\overrightarrow{\mathrm{BC}}|^{2}+|\overrightarrow{\mathrm{AC}}|^{2}=6+35=41=|\overrightarrow{\mathrm{AB}}|^{2}$
Hence, $\triangle A B C$ is a right-angled triangle.

Question 18:

If $\vec{a}_{\text {is }}$ a nonzero vector of magnitude 'a' and λ a nonzero scalar, then $\lambda \vec{a}_{\text {is unit vector if }}$
(A) $\lambda=1$
(C) $a=|\lambda|$
(D) $a=\frac{1}{|\lambda|}$

Answer
Vector $\lambda \vec{a}$ is a unit vector if $|\lambda \vec{a}|=1$.

Now,
$|\lambda \vec{a}|=1$
$\Rightarrow|\lambda||\vec{a}|=1$
$\Rightarrow|\vec{a}|=\frac{1}{|\lambda|} \quad[\lambda \neq 0]$
$\Rightarrow a=\frac{1}{|\lambda|} \quad[|\vec{a}|=a]$
Hence, vector $\lambda \vec{a}$ is a unit vector if $a=\frac{1}{|\lambda|}$.
The correct answer is D.

