JEE(Main)-2024 | 09 April 2024 (Shift-1 Morning) | Question Paper | Memory Based MATHEMATICS

1. $\int \frac{2-\tan x}{3+\tan x}=\alpha x+\beta \ell n(3 \cos x+\sin x)+\gamma$

Where γ is constant of integration. Find $\alpha+\beta$.
2. $f(x)=3 a x^{3}+b x^{2}+c x+41$
$f(1)=41, f^{\prime}(1)=2, f^{\prime \prime}(1)=4$. Find $a^{2}+b^{2}+c^{2}$.
3. The remainder when $(428)^{2024}$ is divided by 21 is
4. If the domain of function $f(x)=\sin ^{-1}\left(\frac{x-1}{2 x+3}\right)$ is $R-(\alpha, \beta)$. Then find $12 \alpha \beta$.
5. $f(x)=\left\{\begin{array}{cl}\left(\frac{8}{7}\right)^{\frac{\tan 8 x}{\tan 7 x}} & , x<\frac{\pi}{2} \\ a-8 & , x=\frac{\pi}{2} \\ (1+|\cot x|)^{\frac{b}{a}|\tan x|} & , x>\frac{\pi}{2}\end{array}\right.$
$f(x)$ is continuous at $x=\frac{\pi}{2}$. Find $a^{2}+b^{2}$.
6. $\frac{1}{1+d}+\frac{1}{(1+d)(1+2 d)}+\frac{1}{(1+2 d)(1+3 d)}+\ldots .+\frac{1}{(1+9 d)(1+10 d)}=5$. Find the value of $50 d$.
7. $\cos \theta \cos \left(60^{\circ}-\theta\right) \cos \left(60^{\circ}+\theta\right) \leq \frac{1}{8} \quad, \theta \in[0,2 \pi]$. Find the sum of value of θ for which $\cos 3 \theta$ is maximum.
8. A variable line passing through $(3,5)$ cut positive $x \& y$ axis. Find minimum area made between axis and line.
9. If the roots of equation $x^{2}+2 \sqrt{2} x-1=0$ are α and β. Find the equation whose roots are $\alpha^{4}+\beta^{4}$ and $\frac{1}{10}\left(\alpha^{6}+\beta^{6}\right)$.
10. Given system as
$3 x+4 y+\lambda z=4$
$5 x+7 y+2 z=8$
$97 x+197 y+83 z=\mu$.
Find $\lambda+3 \mu$ if the system has infinite solutions.
11. A triangle $A B C$ is made of three vectors \vec{a}, \vec{b} and \vec{c}. \vec{a}, \vec{b} and \vec{c} are $(\alpha \hat{i}+5 \hat{j}+4 \hat{k}),(3 \hat{i}+5 \hat{j}+4 \hat{k})$ and $\vec{a}-\vec{b}$ respectively. Area of $\Delta A B C$ is given as $5 \sqrt{6}$. Find $|\vec{c}|^{2}$.
12. A circle with centre (α, β) passes through point $(0,0)$ and $(0,1)$ and touches the circle $x^{2}+y^{2}=9$ for all possible values of (α, β). Find value of $4\left(\alpha^{4}+\beta^{4}\right)$?
13. $x^{2}(1+x)^{98}+x^{3}(1+x)^{97}+\ldots+x^{46}(1+x)^{54}$. If the coefficient of $x^{70}={ }^{99} C_{p}-{ }^{54} C_{q}$, find $p+q$.
14. Given $f(x)=x^{2}+9$ and $g(x)=\frac{x}{x-9}$. And a curve $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$, where $a=f o g(10), b=\operatorname{gof}(3)$. Then find $8 e^{2}+\ell^{2}$, (Where $e=$ eccentricity, $\ell=$ latus rectum length)
15. A circle $x^{2}+y^{2}=5$ and a parabola $y^{2}=4 x$ intersecting each other. Then find the area of smallest intersecting region.
16. A tetrahedral dice written $1,2,3,4$ on their faces is thrown, find the probability such that quadratic equation $a x^{2}+b x+c=0$ has real roots.
17. If $f(m+n)=f(m)+f(n)$ and $f(1)=1$. $\sum_{k=1}^{2022} f(\lambda+k) \leq(2022)^{2}$. Find maximum value of λ.
18. The solution of the differential equation $\left(x^{2}+y^{2}\right) d x-5 x y d y=0 . \quad y(1)=0$
19. For a quadrilateral $O A B C$, given that $\overrightarrow{O A}=2 \vec{a}, \overrightarrow{O B}=6 \vec{a}+2 \vec{b}$ and $\overrightarrow{O C}=3 \vec{b}$. It is also given that area of parallelogram with adjacent sides $O A$ and $O C$ is 15 . Then find the area of quadrilateral OABC.
20. If $\sqrt{2}|\vec{a}-\vec{b}|=|\vec{a}+\vec{b}|,|\vec{a}|=n|\vec{b}|$ and angle between \vec{a} and \vec{b} is $\cos ^{-1}=\frac{5}{9}$ then find $n=$?
21. If set $A=\{z:|z-1| \leq 1\}$ and set $B=\{z:|z-5 i| \leq|z-5|\}$, if $z=a+i b$, where $a, b \in I$. The sum of modulus squares of $A \cap B$ is
22. A ray of light passing through (1,2) after reflecting on x-axis at point Q passes through $R(4,3)$. If $S(h, k)$ is such that PQRS is a parallelogram then find (h, k)
23. If A is 3×3 matrix, $\operatorname{det}(3 \operatorname{adj}(2 \operatorname{adj} A))=2^{-13} \cdot 3^{-10}$ and $\operatorname{det}(3 \operatorname{adj}(2 A))=2^{-m} \cdot 2^{-n}$ then $2 m+2 n$ is equals to

PHYSICS

1. Find the work done by one mole of monoatomic gas undergoing adiabatic expansion such that the volume changes from V to 2 V .
2. Angle between two vectors is $\cos ^{-1}\left(\frac{5}{9}\right)$, if $|\vec{A}+\vec{B}|=\sqrt{2}|\vec{A}-\vec{B}|$ and $\vec{A}=n \vec{B}$ find the value of n.
3. Find the dimensional formula of latent heat.
4. Find the energy equivalent (in MeV) for 1 gm mass of substance?
5. A vehicle travels half of the distance with speed $3 \mathrm{~m} / \mathrm{s}$ and other half of distance in two equal time intervals with speed $6 \mathrm{~m} / \mathrm{s}$ and $9 \mathrm{~m} / \mathrm{s}$. The average speed of vehicle is:
6. What will be the order of de-Broglie wavelength of α particle, proton, electron if their kinetic energies are same?
7. In an atwood machine two masses m_{1} and m_{2} are suspended and the magnitude of acceleration of the masses is $\frac{g}{8}$. Find the ratio of masses.
8. Statement-1: Concave lens always forms erect and virtual images

Statement-2: If a object is placed at one centre of curvature of concave lens then image forms at centre of curvature of other side.
(1) Only statement -1 is correct.
(2) Only statement -2 is correct.
(3) Both of the statements are correct.
(4) None of the statements is correct.
9. Find the ratio of initial to final pressure for a gas compressed adiabatically from 5 litres to 4 litres. (Given $\gamma=\frac{3}{2}$).
10. If particle A is on earth surface and other particle B is revolving around the earth $R / 20$ above earth's surface. Then the difference in mechanical energies of A and B will be: (Radius of Earth is $R=6570 \mathrm{~km}$)
11. If a particle performing $S H M$ has $x=4 \mathrm{~m}, v=2 \mathrm{~m} / \mathrm{s}, a=16 \mathrm{~m} / \mathrm{s}^{2}$, then what will be its amplitude?
12. If a rod of weight w is resting on head of a man at an angle θ as shown in figure, find the load on man's head.

13. Find R equivalent.

14. Find the wavelength of light emitted by the bulb which uses the LED having the band gap of 1.42 eV .
15. If the velocity of particle of mass m is given by $v=\alpha \sqrt{x}$. Find the work done by the particle to go from $x=0$ to $x=d$?
16. Find the current passing through 1Ω resistance.

17. An inductor when connected to a 20 V DC battery gives current of 5 A and when connected to a $(20 \mathrm{~V}, 50 \mathrm{~Hz}) \mathrm{AC}$ supply the current through the inductor is 4 A . Find the inductance of the loop $(\pi=3)$.
18. A square loop of side 2 m carrying current i is placed in a magnetic field $B=(1+4 x) \hat{K}$. Find the net force acting on the loop.

19. A capacitor is made of a flat plate of area A and a second plate having a stair-like structure as shown in figure. The width of each stair is a and the height is d . Find the capacitance of assembly.

20. In a Young's double slit experiment, the slits are 1 mm apart and are illuminated by a light of $\lambda=600 \mathrm{~nm}$. What should be the minimum distance from central maximum where intensity of light is $\frac{1}{4}$ of maximum intensity on a screen placed at 1 m distance from the plane of slits.
21. If the young's modulus of the rod (shown in the figure) is $Y=10^{11} \mathrm{~N} / \mathrm{m}^{2}$. Then find elongation in the rod ($\Delta \mathrm{l}$).

22. $E M$ wave travelling in x direction with $E=60 \mathrm{v} / \mathrm{m} \hat{j}$. Find magnetic field B.
23. A body of moment of inertia $I=0.4 \mathrm{~kg}-\mathrm{m}^{2}$ and radius $\mathrm{r}=10 \mathrm{~cm}$ is given as shown in the figure. If a force of $F=40 \mathrm{~N}$ is applied on the periphery of the body for 10 seconds, then angular velocity attained will be?

24. A half ring of $R=10 \mathrm{~cm}$ and linear density is $4 \mathrm{nC} / \mathrm{m}$. Find the potential at center of the ring.

CHEMISTRY

1. Which of the following are paramagnetic?
$\mathrm{O}_{2}{ }^{-}, \mathrm{O}_{2}{ }^{2-}, \mathrm{C}_{2}{ }^{-}, \mathrm{CN}^{-}, \mathrm{N}_{2}, \mathrm{O}_{2}$
2. What will be the increasing order of energy?
(i) $\mathrm{n}=4, \ell=0$
(ii) $\mathrm{n}=4, \ell=2$
(iii) $\mathrm{n}=4, \ell=1$
(iv) $\mathrm{n}=3, \ell=2$
(v) $\mathrm{n}=3, \ell=1$
(1) $\mathrm{v}<\mathrm{i}<\mathrm{iv}<\mathrm{iii}<\mathrm{ii}$
(2) $\mathrm{v}<\mathrm{ii}<$ iv $<$ iii $<$ i
(3) $\mathrm{iv}<$ i $<v<$ iii $<$ ii
(4) $v<i<i i i<i v<i i$
3. Which of the following is ambident ligand
$\mathrm{NO}_{2}{ }^{-}, \mathrm{CN}^{-}, \mathrm{SCN}^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
4. PbS when react with dil. HNO_{3} then which of the following will not formed
(1) S
(2) $\mathrm{N}_{2} \mathrm{O}$
(3) NO
(4) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
5. Statement-I: $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+1}$ have 3 G.I.

Statement-II: [Co(en) $\left.)_{2} \mathrm{Cl}_{2}\right]^{+1}$ have octahedral geometry
In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Both Statement-I and Statement-II are false
(2) Statement-I is false but Statement-II is true
(3) Both Statement I and Statement-II are true
(4) Statement-I is true but Statement-II is false
6. Which of the following are colourless
$\mathrm{La}^{3+}, \mathrm{Eu}^{3+}, \mathrm{Sm}^{3+}, \mathrm{Nd}^{2+}, \mathrm{Lu}^{3+}$
7. Correct pair of sp^{2} hybridised molecule
(1) $\mathrm{BF}_{3}, \mathrm{NO}_{2}^{-}$
(2) $\mathrm{BF}_{3}, \mathrm{NH}_{2}^{-}$
(3) $\mathrm{BF}_{3}, \mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{H}_{2} \mathrm{O}, \mathrm{NO}_{2}^{-}$
8. Statement-I: Sulphur exist as monoclinic and Rhombic form having S_{8} unit but O_{2} do not have.
Statement-II: Because $\mathrm{p} \pi-\mathrm{p} \pi$ bond is present in O_{2} but not present in sulphur In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Both Statement-I and Statement-II are false
(2) Statement-I is false but Statement-II is true
(3) Both Statement I and Statement-II are true
(4) Statement-I is true but Statement-II is false
9. Statement-I: $r=k[A]^{2}[B]$ on doubling concentration rate becomes x times.

Statement-II:

Find the value of $x+y$.
10. Equal volume of 1 M HCl and $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ neutralized by dil. NaOH and heat released is x and y kcal respectively, then which is correct?
(1) $x=y$
(2) $x=0.5 y$
(3) $x=0.4 y$
(4) $x=2 y$
11. What is the decreasing order of PKa value for given phenolic compounds.

I

II

III

IV
(1) I $>$ II $>$ III $>$ IV
(2) IV $>$ III $>$ II $>$ I
(3) IV $>$ III $>$ I $>$ II
(4) I $>$ II $>$ IV $>$ III
12. How many of following are essential α Amino acids?
(1) Histidine
(2) Arginine
(3) Lysine
(4) Valine
(5) Proline
(6) Glutamic acid
(7) Phenyl alanine
(8) Tryptophan
(9) Glycine
13. Chemical formula of compound present in in tooth enamel?
(1) $\mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{6} \mathrm{~F}_{2}$
(2) $\mathrm{Ca}_{8}\left(\mathrm{PO}_{4}\right)_{4} \mathrm{~F}_{2}$
(3) $\mathrm{Ca}_{6}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{~F}_{2}$
(4) $\mathrm{Ca}_{8}\left(\mathrm{PO}_{4}\right)_{6} \mathrm{~F}_{2}$
14. Consider the following electronic configuration:
$\mathrm{Cu}^{2+}=[\mathrm{Ar}] 3 \mathrm{~d}^{4} 4 \mathrm{~s}^{0}$
$\mathrm{Cu}^{+}=[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{0}$
Which option is correct?
(1) Cu^{2+} is more stable in aqueous solution
(2) Cu^{+}is more stable in aqueous solution
(3) Cu^{+}and Cu^{2+} are equally stable in aqueous solution
(4) Depends upon copper salt
15. Predict the basic strength order
(i)

(ii)

(iii)

(1) $\mathrm{iii}>$ i $>$ ii
(2) ii $>$ iii $>$ i
(3) iii $>$ ii $>$ i
(4) ii $>$ i $>$ iii
16. Heat of solution of $\mathrm{CuSO}_{4}(\mathrm{~s}) \& \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ is -72 and $12 \mathrm{KJ} / \mathrm{mol}$ respectively.

Mole of heat of hydration of anhyd. CuSO_{4} is \qquad
17. Given $E^{0}=133 \mathrm{~V}$

For $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
How many of following will oxidise.
$\mathrm{Fe}, \mathrm{Ni}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$
18.

(1)

(2)

(3)

(4)

19. Identify the correct product for below given reaction

(1)

(2)

(3)

(4)

20.

I
(1) Strong electrolyte
(2) Weak electrolyte
(3) Strong electrolyte
(4) Weak electrolyte

II

Weak electrolyte
Strong electrolyte
Strong electrolyte
Weak electrolyte
21. Method of purification of compounds depends on
(1) Impurity
(2) Nature of compound and impurity
(3) Nature of compound
(4) Does not depend on impurity
22.

Product P and Q will be
(1)

(2)

(3)

