Å

- 1. $\int \frac{2 \tan x}{3 + \tan x} = \alpha x + \beta \ell n (3 \cos x + \sin x) + \gamma$ Where γ is constant of integration. Find $\alpha + \beta$.
- 2. $f(x) = 3ax^3 + bx^2 + cx + 41$ f(1) = 41, f'(1) = 2, f''(1) = 4. Find $a^2 + b^2 + c^2$.
- **3.** The remainder when $(428)^{2024}$ is divided by 21 is

4. If the domain of function
$$f(x) = \sin^{-1}\left(\frac{x-1}{2x+3}\right)$$
 is R - (α , β). Then find $12\alpha\beta$.

5.
$$f(x) = \begin{cases} \left(\frac{8}{7}\right)^{\frac{\tan 8x}{\tan 7x}}, x < \frac{\pi}{2} \\ a - 8, x = \frac{\pi}{2} \\ \left(1 + \left|\cot x\right|\right)^{\frac{b}{a}|\tan x|}, x > \frac{\pi}{2} \end{cases}$$

f(x) is continuous at
$$x = \frac{\pi}{2}$$
. Find $a^2 + b^2$.

6.
$$\frac{1}{1+d} + \frac{1}{(1+d)(1+2d)} + \frac{1}{(1+2d)(1+3d)} + \dots + \frac{1}{(1+9d)(1+10d)} = 5$$
. Find the value of 50d.

- 7. $\cos\theta\cos(60^\circ \theta)\cos(60^\circ + \theta) \le \frac{1}{8}$, $\theta \in [0, 2\pi]$. Find the sum of value of θ for which $\cos 3\theta$ is maximum.
- **8.** A variable line passing through (3, 5) cut positive x & y axis. Find minimum area made between axis and line.
- 9. If the roots of equation $x^2 + 2\sqrt{2}x 1 = 0$ are α and β . Find the equation whose roots are $\alpha^4 + \beta^4$ and $\frac{1}{10}(\alpha^6 + \beta^6)$.
- 10. Given system as $3x + 4y + \lambda z = 4$ 5x + 7y + 2z = 8 $97x + 197y + 83z = \mu$. Find $\lambda + 3\mu$ if the system has infinite solutions.

JEE-Main 09-04-2024 Morning Shift www

www.esaral.com

- **11.** A triangle ABC is made of three vectors \vec{a}, \vec{b} and \vec{c} . \vec{a}, \vec{b} and \vec{c} are $(\alpha \hat{i} + 5\hat{j} + 4\hat{k}), (3\hat{i} + 5\hat{j} + 4\hat{k})$ and $\vec{a} \vec{b}$ respectively. Area of $\triangle ABC$ is given as $5\sqrt{6}$. Find $|\vec{c}|^2$.
- **12.** A circle with centre (α, β) passes through point (0, 0) and (0, 1) and touches the circle $x^2 + y^2 = 9$ for all possible values of (α, β) . Find value of $4(\alpha^4 + \beta^4)$?

13.
$$x^{2}(1+x)^{98} + x^{3}(1+x)^{97} + ... + x^{46}(1+x)^{54}$$
. If the coefficient of $x^{70} = {}^{99}C_{p} - {}^{54}C_{q}$, find p + q.

- **14.** Given $f(x) = x^2 + 9$ and $g(x) = \frac{x}{x-9}$. And a curve $\frac{x^2}{a} + \frac{y^2}{b} = 1$, where a = fog(10), b = gof(3). Then find $8e^2 + \ell^2$, (Where e = eccentricity, $\ell =$ latus rectum length)
- **15.** A circle $x^2 + y^2 = 5$ and a parabola $y^2 = 4x$ intersecting each other. Then find the area of smallest intersecting region.
- **16.** A tetrahedral dice written 1, 2, 3, 4 on their faces is thrown, find the probability such that quadratic equation $ax^2 + bx + c = 0$ has real roots.

17. If
$$f(m+n) = f(m) + f(n)$$
 and $f(1) = 1$.
$$\sum_{k=1}^{2022} f(\lambda + k) \le (2022)^2$$
. Find maximum value of λ .

- **18.** The solution of the differential equation $(x^2 + y^2)dx 5xy dy = 0$. y(1) = 0
- **19.** For a quadrilateral OABC, given that $\overrightarrow{OA} = 2\vec{a}, \overrightarrow{OB} = 6\vec{a} + 2\vec{b}$ and $\overrightarrow{OC} = 3\vec{b}$. It is also given that area of parallelogram with adjacent sides OA and OC is 15. Then find the area of quadrilateral OABC.
- **20.** If $\sqrt{2} |\vec{a} \vec{b}| = |\vec{a} + \vec{b}|, |\vec{a}| = n |\vec{b}|$ and angle between \vec{a} and \vec{b} is $\cos^{-1} = \frac{5}{9}$ then find n = ?
- **21.** If set $A = \{z : |z 1| \le 1\}$ and set $B = \{z : |z 5i| \le |z 5|\}$, if z = a + ib, where $a, b \in I$. The sum of modulus squares of $A \cap B$ is
- 22. A ray of light passing through (1, 2) after reflecting on x-axis at point Q passes through R(4, 3). If S(h, k) is such that PQRS is a parallelogram then find (h, k)
- 23. If A is 3 × 3 matrix, det(3adj(2adjA)) = 2⁻¹³. 3⁻¹⁰ and det(3adj(2A)) = 2^{-m}. 2⁻ⁿ then 2m + 2n is equals to

JEE-Main 09-04-2024 Morning Shift

www.esaral.com

Å

PHYSICS

- **1.** Find the work done by one mole of monoatomic gas undergoing adiabatic expansion such that the volume changes from V to 2V.
- **2.** Angle between two vectors is $\cos^{-1}\left(\frac{5}{9}\right)$, if $\left|\vec{A} + \vec{B}\right| = \sqrt{2}\left|\vec{A} \vec{B}\right|$ and $\vec{A} = n\vec{B}$ find the value of n.
- **3.** Find the dimensional formula of latent heat.
- 4. Find the energy equivalent (in MeV) for 1 gm mass of substance?
- **5.** A vehicle travels half of the distance with speed 3 m/s and other half of distance in two equal time intervals with speed 6 m/s and 9 m/s. The average speed of vehicle is:
- 6. What will be the order of de-Broglie wavelength of α particle, proton, electron if their kinetic energies are same?
- 7. In an atwood machine two masses m_1 and m_2 are suspended and the magnitude of acceleration of the masses is $\frac{g}{g}$. Find the ratio of masses.
- Statement-1: Concave lens always forms erect and virtual images
 Statement-2: If a object is placed at one centre of curvature of concave lens then image forms at centre of curvature of other side.
 - (1) Only statement -1 is correct.
 - (2) Only statement -2 is correct.
 - (3) Both of the statements are correct.
 - (4) None of the statements is correct.
- 9. Find the ratio of initial to final pressure for a gas compressed adiabatically from 5 litres to 4 litres. (Given $\gamma = \frac{3}{2}$).
- **10.** If particle A is on earth surface and other particle B is revolving around the earth R/20 above earth's surface. Then the difference in mechanical energies of A and B will be: (Radius of Earth is R = 6570 km)
- **11.** If a particle performing SHM has x = 4 m, v = 2 m/s, a = 16 m/s², then what will be its amplitude?
- **12.** If a rod of weight w is resting on head of a man at an angle θ as shown in figure, find the load on man's head.

JEE-Main 09-04-2024 Morning Shift

Å

13. Find R equivalent.

- **14.** Find the wavelength of light emitted by the bulb which uses the LED having the band gap of 1.42 eV.
- **15.** If the velocity of particle of mass m is given by $v = \alpha \sqrt{x}$. Find the work done by the particle to go from x = 0 to x = d?
- **16.** Find the current passing through 1 Ω resistance.

- **17.** An inductor when connected to a 20V DC battery gives current of 5A and when connected to a (20V, 50Hz) AC supply the current through the inductor is 4A. Find the inductance of the loop ($\pi = 3$).
- **18.** A square loop of side 2 m carrying current i is placed in a magnetic field $B = (1 + 4x)\hat{K}$. Find the net force acting on the loop.

19. A capacitor is made of a flat plate of area A and a second plate having a stair-like structure as shown in figure. The width of each stair is a and the height is d. Find the capacitance of assembly.

JEE-Main 09-04-2024 Morning Shift

www.esaral.com

Å

20. In a Young's double slit experiment, the slits are 1 mm apart and are illuminated by a light of λ = 600nm. What should be the minimum distance from central maximum where intensity

of light is $\frac{1}{4}$ of maximum intensity on a screen placed at 1 m distance from the plane of slits.

21. If the young's modulus of the rod (shown in the figure) is $Y = 10^{11} \text{ N/m}^2$. Then find elongation in the rod (Δl).

- **22.** EM wave travelling in x direction with $E = 60 \text{ v/m} \hat{j}$. Find magnetic field B.
- **23.** A body of moment of inertia I = 0.4 kg-m² and radius r = 10 cm is given as shown in the figure. If a force of F = 40N is applied on the periphery of the body for 10 seconds, then angular velocity attained will be?

24. A half ring of R = 10 cm and linear density is 4 nC/m. Find the potential at center of the ring.

JEE-Main 09-04-2024 Morning Shift

CHEMISTRY

1.	Which of the following are paramagnetic? O_2^- , O_2^{2-} , C_2^- , CN^- , N_2 , O_2			
2.	What will be the increasing order of energy?			
	(i) n = 4, ℓ = 0	(ii) n = 4, ℓ = 2	(iii) n = 4, ℓ = 1	(iv) n = 3, ℓ = 2
	(v) n = 3, ℓ = 1			
	(1) v < i < iv < iii <	ii	(2) v < ii < iv < iii	< i
	(3) iv < i < v < iii <	ii	(4) $v < i < iii < iv$	<
0				
3.	Which of the following is ambident ligand			
4.	PbS when react with dil. HNO $_3$ then which of the following will not formed			
	(1) S	(2) N ₂ O	(3) NO	(4) Pb(NO ₃) ₂
F	Statement-I: $[Co(en)_{c}CL]^{+1}$ have 3 G I			
5.	Statement = 1. $[Co(en)_2Cl_2]^{-1}$ have a scaledral geometry			
	In the light of the above statements, choose the most appropriate answer from the options			
	given below:			
	(1) Both Statement-I and Statement-II are false			
	(2) Statement-I is false but Statement-II is true			
	(3) Both Statement I and Statement-II are true			
	(4) Statement-I is true but Statement-II is false			
6.	Which of the following are colourless			
	La^{3+} , Eu^{3+} , Sm^{3+} , Nd^{2+} , Lu^{3+}			
7.	Correct pair of sp ² hybridised molecule			
	(1) BF ₃ , NO ₂ −	(2) BF ₃ , NH ₂ -	(3) BF ₃ , H ₂ O	(4) H ₂ O, NO ₂ −
8.	Statement–I: Sulphur exist as monoclinic and Rhombic form having S ₈ unit but O ₂ do not			
	have.			
	Statement–II: Because $p\pi$ – $p\pi$ bond is present in O ₂ but not present in sulphur			
	In the light of the above statements, choose the most appropriate answer from the options			
	given below:			
	(I) Both Statement-I and Statement-II are false			
	(2) Statement-Lis Taise but Statement-II is true			
	(4) Statement-I is true but Statement-II is false			

www.esaral.com

Å

- Find the value of x + y.
- 10. Equal volume of 1 M HCl and 1 M H₂SO₄ neutralized by dil. NaOH and heat released is x and y kcal respectively, then which is correct?
 - (1) x = y
 - (2) x = 0.5 y
 - (3) x = 0.4 y
 - (4) x = 2y

11. What is the decreasing order of PKa value for given phenolic compounds.

JEE-Main 09-04-2024 Morning Shift

www.esaral.com

Å

- Heat of solution of CuSO₄(s) & CuSO₄·5H₂O(s) is -72 and 12 KJ/mol respectively.
 Mole of heat of hydration of anhyd. CuSO₄ is____
- 17. Given $E^0 = 1.33 \text{ V}$ For $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$ How many of following will oxidise. Fe, Ni, Cr, Cu, Ag, Au

19. Identify the correct product for below given reaction

(1) Impurity

20.

21.

- (2) Nature of compound and impurity
- (3) Nature of compound
- (4) Does not depend on impurity

JEE-Main 09-04-2024 Morning Shift

www.esaral.com

