KINEMATICS

Displacement

The displacement of a particle is defined as the difference between its final position and its initial position. We represent the displacement as Δx.

$$
\Delta x=x_{f}-x_{i}
$$

The subscripts i and f refer to be initial and final positions. Average Velocity and Average Speed

The average velocity of an object travelling along the x-axis is defined as the ratio of its displacement to the time taken for that displacement.

$$
v_{a v}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

Average Acceleration is defined as the ratio of the change in velocity to the time taken.

$$
a_{a v}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}
$$

Instantaneous Velocity : The magnitude of instantaneous velocity at a given instant is called instantaneous velocity at that instant.

$$
v(t)==\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}
$$

The instantaneous velocity function is the derivative with respect to the time of the displacement function.

$$
v(t)=\frac{d x(t)}{d t}
$$

Instantaneous Acceleration is defined analogous to the method for defining instantaneous velocity. That is, instantaneous acceleration is the value approached by the average acceleration as the time interval for the measurement becomes closer and closer to zero.

The Instantaneous acceleration function is the derivative with respect to time of the velocity function

$$
a(t)=\frac{d v(t)}{d t}
$$

	Displaceme nt	Velocity	Acceleration
1. At rest			
2. Motion with constant velocity		$\xrightarrow{\stackrel{n}{\square}}$	
3. Motion with constant acceleration			
4. Motion with constant deceleration			

MOTION WITH CONSTANT ACCELERATION

The equations of kinematics are summarized as

$$
\begin{aligned}
& v=v_{0}+a t \\
& x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \\
& x=x_{0}+\frac{1}{2}\left(v_{0}+v\right) t
\end{aligned}
$$

Where, $x_{0}=$ Initial position coordinate
$x=$ Final position coordinate
$\nu=$ Final velocity
$a=$ Acceleration (constant)
$t=$ Elapsed time

FREE FALL

Motion that occurs solely under the influence of gravity is called free fall.

The equations of kinematics may be modified as

$$
\begin{aligned}
& v=v_{0}-g t \\
& y=y_{0}+\frac{1}{2}\left(v_{0}+v\right) t \\
& y=y_{0}+v_{0} t-\frac{1}{2} g t^{2} \\
& v^{2}=v_{0}^{2}-2 g\left(y-y_{0}\right)
\end{aligned}
$$

The signs of v and v_{o} are determined by their
directions relative to the chosen $+y$ axis.

For two-dimensional motion in the plane, the x and y components of these equations are:

$$
\begin{array}{lrl}
v_{x}=v_{0 x}+a_{x} t & v_{y}=v_{0 y}+a_{y} t \\
x=x_{0}+v_{0 x}+\frac{1}{2} a_{x} t^{2} & y=y_{0}+y_{o_{y}} t+\frac{1}{2} a_{y} t^{2} \\
x=x_{0}+\frac{1}{2}\left(v_{0 x}+v_{x}\right) t & y=y_{0}+\frac{1}{2}\left(v_{0 y}+v_{y}\right) t \\
v_{x}^{2}=v_{o x}^{2}+2 a_{x}\left(x-x_{0}\right) & v_{y}^{2}=v_{o y}^{2}+2 a_{y}\left(y-y_{o}\right)
\end{array}
$$

PROJECTILE MOTION

A projectile motion near the surface of the earth consists of two independent motions, a horizontal motion at constant speed and a vertical one subject to the acceleration due to gravity.

The equations of kinematics for projectile motion are

$$
\begin{align*}
& x=v_{o x} t \tag{15}\\
& v_{y}=v_{o y}-g t \tag{16}
\end{align*}
$$

$$
\begin{align*}
& y=y_{o}+v_{o y} t-\frac{1}{2} g t^{2} \tag{17}\\
& v_{y}^{2}=v_{o y}^{2}-2 g\left(y-y_{o}\right) \tag{18}
\end{align*}
$$

IMPORTANT

1. The time of flight is given by

$$
T=\frac{2 v_{o} \sin \theta}{g}
$$

2. The horizontal range is given by

$$
R=\frac{v_{o}^{2} \sin 2 \theta}{g}
$$

3. The maximum height of the projectile is

$$
H=\frac{v_{o}^{2} \sin ^{2} \theta}{2 g}
$$

4. The trajectory of a projectile is a parabola

$$
y=x \tan \theta-\frac{1}{2} \frac{g}{\left(v_{0} \cos \theta\right)^{2}} x^{2}
$$

CIRCULAR MOTION

Let us consider a particle which moves in a circular path of radius r and constant speed v, angular speed is given by

$$
\omega=v / r
$$

Thus, acceleration, $a=\frac{\Delta v}{\Delta t}=\frac{v^{2}}{r}$

Tangential and Normal Components of Acceleration in Two Dimensions

1. The velocity vector is always tangential to the path.
2. The acceleration vector may have two components: one tangential to the path and one perpendicular to the path.
(a) The component of the acceleration parallel to the path is due to a change in speed. When the speed is increasing, the tangential component a_{t} points in the same direction as the velocity; when the speed is decreasing, the tangential component points opposite to the velocity.
(b) When the path of an object curves, there is a component of the acceleration perpendicular to the velocity. This component of the acceleration a_{c} points toward the inside of the curve.
(c) The total acceleration is the vector sum of the tangential and centripetal components.
