<mark>∛S</mark>aral

Å

Oscillations and Waves

If a particle in periodic motion moves back and *forth* (or *to* and *fro*) over the same path, then its motion is called *oscillatory* or *vibratory*.

Characteristics of a Harmonic Motion

The basic quantities characterizing a periodic motion are the *amplitude*, *period* and *frequency* of vibrations.

Amplitude (A)

The amplitude of oscillations is the maximum displacement of a vibrating body from the position of equilibrium.

Time Period (T)

The time period of oscillations is defined as the time between two successive identical positions passed by the body in the same direction.

Frequency (f)

The frequency of oscillations is the number of cycles of vibrations of a body completed in one second. The frequency is related to the time period as

Å

∛Saral

$$f = \frac{1}{T}$$

The *SI* unit of frequency is s⁻¹ or Hz (hertz)

Simple Harmonic Motion

Let us consider an oscillatory particle along a straight line whose potential energy function varies as

$$\mathbf{U}(x) = \frac{1}{2}kx^2$$

where k is a constant

Simple Harmonic Motion.

 $x = A \sin(\omega t + \phi)$ is the *general* equation of SHM.

$$\frac{d^2x}{dt^2} = \Box \Box^2 x \quad or \quad \frac{d^2x}{dt^2} + \Box^2 x = 0$$

Above equation is the *standard* differential equation of SHM.

The Spring-Mass System

Time period of a spring-mass is given by

$$T = 2\pi \sqrt{\frac{m}{k}}$$

Series and Parallel Combinations of springs

For **Series Combinations of springs**, the *equivalent* stiffness of the combination is given by

 $\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2} \Longrightarrow k = \frac{k_1 k_2}{k_1 + k_2}$

For *parallel* **Combinations of springs**, the *equivalent* stiffness of the combination is given by

$$k = k_1 + k_2$$

ENERGY CONSERVATION IN SHM

In a *spring-mass* system, the instantaneous *potential energy* and *kinetic energy* are expressed as

$$U = \frac{1}{2}kx^2 = \frac{1}{2}kA^2\sin^2(\omega t + \phi)$$

and
$$K = \frac{1}{2}mv^2 = \frac{1}{2}m\omega^2 A^2 \cos^2(\omega t + \phi)$$

Since
$$\omega^2 = \frac{k}{m}$$
, therefore,

$$K = \frac{1}{2}kA^2\cos^2(\omega t + \phi)$$

The total mechanical energy is given by

$$E = K + U$$
 or $E = \frac{1}{2}kA^2[\sin^2(\omega t + \phi) + \cos^2(\omega t + \phi)]$

or
$$E = \frac{1}{2}kA^2 = \text{constant}$$

Thus, the total energy of SHM is constant and proportional to the square of the amplitude.

The variation of *K* and *U* as function of *x* is shown in figure. When $x = \pm A$, the kinetic energy is zero and the total energy is equal to the maximum potential energy.

The variation of the kinetic energy, potential energy, and total energy as a function of position.

$$E = U_{max} = \frac{1}{2}kA^2$$

There are extreme points or turning points of the SHM.

At x = 0, U = 0 and the energy is purely kinetic,

i.e.
$$E = K_{\max} = \frac{1}{2}m(\omega A)^2$$

∛Saral

<mark>∛</mark>Saral

WAVE

The wave function

 $y = A \sin [k(x \pm vt)]$

 $y = A \sin(kx \pm \Box t)$

The *negative* sign is used when the wave travels along the positive x - axis, and vice-versa.

Some Important Points

$$k = \frac{2\pi}{\lambda}$$

k is called the *wave number* and \Box is called the *wavelength*.).

$$\Box = \frac{2\pi}{T} = 2 \Box f$$

where \Box is called the *angular frequency* (measured in rad/s) and *T* is the time period and *f* is the frequency.

Time Period (T)

$$T = \frac{1}{f}$$

Frequency (f)

The number of complete vibrations of a point on the string that occur in one second or, the number of wavelengths that pass a given point in one second.

Å

∛Saral

Wave velocity (v)

 $\mathcal{V} \equiv \frac{\lambda}{T} = \lambda f = \frac{\omega}{k}$

Amplitude (A)

The maximum displacement of a particle on the medium from the equilibrium position.

Wave Velocity and Particle Velocity

Wave velocity is the velocity of the disturbance which propagates through a medium. *It only depends on the properties of the medium and is independent of time and position.*

Particle velocity is the rate at which particle's displacement vary as a function of time, i.e.

 $\frac{\partial y}{\partial t} = \pm \omega A \cos(kx \pm \omega t + \phi)$

The difference between the wave velocity *v* and the velocity of a particle of the medium $\left(\frac{\partial y}{\partial t}\right)$ is shown in the figure.

<mark>∛S</mark>aral

Å

VELOCITY OF A TRANSVERSE WAVE ON A STRING

 $v = \sqrt{\frac{T}{\mu}}$

Where T is the tension in the string and μ is the mass per unit length of the string.

Note: that the velocity is measured with respect to the medium.

ENERGY TRANSPORTED BY A HARMONIC WAVE

The average power transmitted by the wave is

 $P_{av} = \frac{1}{2}\mu\omega^2 A^2 v$

Where, $v = \frac{dx}{dt}$ is the wave velocity.

The mass per unit length of a wire is given by $\mu = \rho a$

JEE Main Physics Revision Notes

Where, ρ is the density and *a* is the cross-sectional area.

The intensity of the wave is given by

$$I = \frac{P_{av}}{a} = \frac{1}{2}\rho\omega^2 A^2 v$$

Interference: Adding waves that differ in Phase only

Consider two waves travelling on the same string with the same amplitude, wavelength and frequency but with a constant phase difference as described by the following equations:

 $y_1 = a \sin(kx - \omega t)$ $y_2 = a \sin(kx - \omega t + \phi)$ $y = y_1 + y_2 = a[\sin(kx - \omega t) + \sin(kx - \omega t + \phi)]$

Using trigonometric identity

 $y = \left(2a\cos\frac{\phi}{2}\right)\sin\left(kx - \omega t - \frac{\phi}{2}\right)$

The term $(2acos\frac{\varphi}{2})$ is interpreted as the new amplitude of the wave.

 $y = A \sin(kx - \omega t - \frac{\phi}{2})$

where $A = 2a\cos(\frac{\phi}{2})$

Constructive & Destructive Interference

JEE Main Physics Revision Notes

www.esaral.com

Å

When $\phi = 2n\pi$ (where n = 0, 1, 2,), the positions of crests and troughs of each wave coincide with the positions of the crests and troughs of another wave.

$$A = 2a\cos\left[(2n-1)\frac{\pi}{2}\right] = 0$$

If the two waves have different amplitudes a_1 and a_2 , respectively, the resultant amplitude is given by

 $A = \sqrt{a_1^2 + a_2^2 + 2a_1a_2\cos\phi}$

Where, ϕ is the constant phase difference.

If $\phi = 2n\pi$ where $n = 0, 1, 2, \dots$ $A_{max} = a_1 + a_2$ (constructive) If $\phi = (2n - 1)\pi$ where $n = 1, 2, 3, \dots$ $A_{min} = a_1 - a_2$ (destructive)

Since, intensity is proportional to the square of the amplitude. Therefore,

$$I = I_{1} + I_{2} + 2\sqrt{I_{1}I_{2}} \cos \phi$$

If $\phi = 2n\pi$ where $n = 0, 1, 2, ...,$

$$I_{max} = (\sqrt{I_{1}} + \sqrt{I_{2}})^{2}$$

If $\phi = (2n - 1)\pi$ where $n = 1, 2, 3, ...,$

$$I_{min} = (\sqrt{I_{1}} - \sqrt{I_{2}})^{2}$$

<mark>∛</mark>Saral

Beats:

 $f_{beat} = f_1 - f_2$

Standing Waves: Adding Waves That Differ In Direction Only

When two waves identical in all respects, but travelling in opposite direction along a straight line, superimpose on each other, standing waves are produced.

Let $y_1 = A \sin(\Box t - kx)$ and $y_2 = A \sin(\Box t + kx)$

 $y = y_1 + y_2 = 2A \cos kx \sin \Box t$

 $2A \cos kx$ represents the amplitude of particle located at 'x'.

Some Important Points:

- 1. There are positions along the string for which the amplitude of oscillation is always zero (called *nodes*), and other positions where the amplitude of oscillation is *always 2a* (called *antinodes*).
- 2. Distance between consecutive nodes = distance between consecutive antinodes $=\frac{\lambda}{2}$.

Å

Positions of Nodes

Any position for which *kx* is a multiple of π yields a zero; all these are the positions of nodes

 $kx = 0, \pi, 2\pi, 3\pi, \ldots$

Since $k = \frac{2\pi}{\lambda}$, therefore

 $x=0,\frac{\lambda}{2},\frac{2\lambda}{2},\frac{3\lambda}{2},\ldots$

Note that the distance between two successive nodes is $\frac{\lambda}{2}$. Positions for which *kx* is an *odd* multiple of $\frac{\pi}{2}$ yields

maximum value of *2asinkx*; all these are the positions of *antinodes*.

 $kx = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots, n$ or $x = \frac{\lambda}{4}, \frac{3\lambda}{4}, \frac{5\lambda}{4}, \dots, n$

Note that the distance between two successive antinodes is $\frac{\lambda}{2}$. Also, *nodes* and *antinodes* occur alternatively and equally spaced from each other.

The standing wave patterns possible on the string are called the *normal modes*.

<mark>∛S</mark>aral

Å

Figure shows that the wavelength of the normal modes must be

$$\lambda = 2L, L, \frac{2}{3}L, \ldots$$

In general

$$\lambda = \frac{2L}{n}$$

where *n* = 1, 2, 3.....

The respective frequencies are given by

Thus,

$$=\frac{v}{2L},\frac{v}{L},\frac{3v}{2L},\ldots$$

In general,

$$f = n \left(\frac{v}{2L} \right)$$

where *n* = 1, 2, 3,

The *first* frequency $\left(\frac{v}{2L}\right)$ is called the *fundamental frequency* (or the *first harmonic*). The *second* frequency (*n* = 2) is called the *first overtone* (or *second harmonic*), the *third* frequency

Normal modes of a string fixed at both ends. (a) Fundamental frequency or first harmonic

(b) First overtone or second harmonic

(c) Second overtone or third harmonic

Å

(n = 3) is called the *second overtone* (or *third harmonic*) and so on.

REFLECTION AND TRANSMISSION OF WAVES

Since the tensions are the same, the relative magnitudes of the wave velocities are determined by the mass densities.

$$v = \sqrt{\frac{T}{\mu}} \Longrightarrow v \propto \frac{1}{\sqrt{\mu}}$$

Consider two strings of mass densities \Box_1 and \Box_2 joined together to form a single string. The respective wave velocities in the two strings will be v_1 and v_2 which are given by

$$\frac{v_1}{v_2} = \sqrt{\frac{\mu_2}{\mu_1}}$$

Standing Sound Waves

Standing waves can be produced in air columns, for example, in organ pipes, flutes, and other wind instruments because sound waves are reflected both at a closed end and at an *open* end of a pipe. In an *open pipe* both the ends are open, whereas in a *closed pipe* one end is closed.

In this case, longitudinal stationary waves are formed

Fundamental mode harmonic

Ist overtone

3rd

Ą

2nd overtone(b) Closed organ pipe :

Fundamental mode st harmonic Ist overtone

3rd harmonic

2nd overtone

Å

5th harmonic

Intensity Level: The Decibel Scale

The intensity level β in terms of the *decibel* (*dB*), which is defined as

 $\beta = 10\log \frac{1}{I_0}$

Where, I is the measured *intensity* and I_0 is some reference value.

DOPPLER EFFECT

The change in frequency due to the motion of the source, observer, or both is called the **Doppler Effect**.

Table: Doppler Frequencies (f') for Different Situations

JEE Main Physics Revision Notes

www.esaral.com

	Source	Source	Source Away
	Stationary	Towards	from Observer
		Observer	
Observer	f	$f(\underline{v})$	$f(\underline{v})$
Stationary		$\left(v-v_{s}\right)$	$\left(v+v_{s}\right)$
Observer	$f\left(\frac{v+v_o}{v-v_o}\right)$	$f\left(\frac{v+v_o}{v-v_o}\right)$	$f\left(\frac{v+v_o}{v-v_o}\right)$
towards		$(v-v_s)$	$(v+v_s)$
source			
Observer	$f\left(\frac{v-v_o}{v-v_o}\right)$	$f\left(\frac{v-v_{o}}{v-v_{o}}\right)$	$f\left(\frac{v-v_{o}}{v-v_{o}}\right)$
away from		$(v-v_s)$	$(v+v_s)$
source			