Ą

Solutions

Parts per million (ppm) and parts per billion (ppb): It is

convenient to measure the concentration of *trace quantities* of solutes in parts per million and parts per billion. *It is independent of the temperature*.

 $ppm = \frac{\text{mass of solute component}}{\text{Total mass of solution}} \times 10^{6}$ $ppb = \frac{\text{mass of solute component}}{\text{Total mass of solution}} \times 10^{9}$

Normality (N): Normality of solution is equal to the number of gram equivalents of a solute present per *litre* of the solution. It can be calculated by following formulas;

(i) Normality (N) = $\frac{\text{Number of gram equivelent of solute}}{\text{Volume of solution (l)}}$ (ii) Normality (N) = $\frac{\text{Weight of solute in g.}}{\text{gram equivelent weight of solute } \times \text{Volume of solution (l)}}$

Molarity (M): Molarity of a solution is equal to the number of moles of the solute present per litre of solution.It can be calculated by following formulas,

(1) $M = \frac{\text{No. of moles of solute}(n)}{\text{Vol. of solution in litres}}$,

(ii) If molarity and volume of solution are changed from M_1, V_1 to M_2, V_2 . Then,

∛Saral

Å

 $M_1V_1 = M_2V_2$ (Molarity equation)

(ii) In balanced chemical equation, if n_1 moles of reactant one react with n_2 moles of reactant two. Then,

 $\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}$

(iii) Volume of water added to get a solution of molarity M_2 from V_1 ml of molarity M_1 is

 $V_2 - V_1 = \left(\frac{M_1 - M_2}{M_2}\right) V_1$

(iv) If two solutions of the same solute are mixed then molarity (M) of resulting solution.

 $M = \frac{M_1 V_1 + M_2 V_2}{(V_1 + V_2)}$

Here, ${}^{M_{_1}V_{_1}}$ are molarity and volume of initial solution and ${}_{M_{_2}V_{_2}}$ are

molarity and volume of final solution.

Relation between molarity and normality

Normality of solution = molarity $\times \frac{\text{Molecular mass}}{\text{Equivalent mass}}$

Normality \times equivalent mass = molarity \times molecular mass

∛Saral

Å

Molality (*m*) : Mathematically molality can be calculated by following formulas,

(i) $m = \frac{\text{Number of moles of the solute}}{\text{Weight of the solvent in grams}} \times 1000$

(ii) $\mathcal{M} = \frac{\text{Strength per 1000 grams of solvent}}{\text{Molecular mass of solute}}$

Relation between molarity (M) and molality (m)

Molality (m) = $\frac{Molarity}{Density - \frac{Molarity \times molecular mass}{1000}}$

Formality (*F*) : Formality of a solution may be defined as the number of gram formula masses of the ionic solute dissolved per litre of the solution. It is represented by *F*.

Formality (F)= $\frac{\text{Number of gram formula masses of solute}}{\text{Volume of solution in litres}}$

- Mole fraction (X): To find the mole fraction, divide moles of a constituent(either solute or solvent) by the total moles of both the constituents (solute and solvent). It is denoted by the letter x.
- Let in a solution A is solute and B is solvent, then their mole fractions are given below;

Mole fraction of Solute *A*, $X_A = \frac{n_A}{n_A + n_B}$


```
Mole fraction of solvent B, X_B = \frac{n_B}{n_A + n_B}
```

Azeotropic mixture

Azeotropes are defined as the mixtures of liquids that boil like a pure liquid at constant temperature and possess components in same composition, in liquid as well as in vapour phase.

Osmotic pressure (π)

The osmotic pressure of a solution at a particular temperature may be defined as the excess hydrostatic pressure that builds up when the solution is separated from the solvent by a semi-permeable membrane. It is denoted by

 π .

According to Boyle Van't Hoff law (at conc. temp.)

 $\pi \propto C$

.....(i)

According to Gaylussac Van't Hoff law (at conc. temp.)

```
\pi \propto T
```

.....(ii)

From equation (i) and (ii)

 $\pi \propto CT$, $\pi = CRT$ (Van't Hoff equation)

 $\pi = \frac{n}{V}RT \qquad \left(\therefore \quad C = \frac{n}{V} \right) \quad ; \quad \pi = \frac{w}{m}\frac{RT}{V} \qquad \left(\therefore \quad n = \frac{w}{m} \right)$

Å

<mark>∛</mark>Saral

Here, C = concentration of solution in *moles* per *litre* R = gas constant; T = temperature n = number of *moles* of solute; V = volume of solution m = molecular weight of solute; w = weight of solute

(iv) *Relation of osmotic pressure with different colligative properties*: Osmotic pressure is related to relative lowering of vapour pressure, elevation of boiling point and depression of freezing point according to the following relations,

(a)
$$\pi = \left(\frac{P_A^o - P_A}{P_A^o}\right) \times \frac{dRT}{M}$$
 (b) $\pi = \Delta T_b \times \frac{dRT}{1000 \times K_b}$
(c) $\pi = \Delta T_f \times \frac{dRT}{1000 \times K_f}$

In the above relations, π = Osmotic pressure; d = Density of solution at temperature *T*; *R* = Universal gas constant;

M = Mol. Mass of solute;

 K_b = Molal elevation constant of solvent;

 κ_{f} = Molal depression constant of solvent

Elevation in b.pt. of the solvent

If T_b is the boiling point of the solvent and T is the boiling point of the solution, the difference in the boiling point (ΔT or ΔT_b) is called the elevation of boiling point.

 $T - T_b = \Delta T_b \quad \mathbf{Or} \quad \Delta T$

∛Saral

Å

Elevation in boiling point is determined by Landsberger's method and Cottrell's method. Study of elevation in boiling point of a liquid in which a non-volatile solute is dissolved is called as ebullioscopy.

Important relations concerning elevation in boiling point

(1) $\Delta T_b \propto p^0 - p$

Here ,^{p⁰-p} is lowering of vapour pressure.

(ii) $\Delta T_b = K_b \times m$

Here, $K_b =$ molal elevation constant; m = Molality of the solution; $\Delta T_b =$ Elevation in boiling point

As you know, $m = \frac{W \times 1000}{W}$ Thus, $\Delta T_b = \frac{1000 \times K_b \times W}{m \times W}$ Or $m = \frac{1000 \times K_b \times W}{\Delta T_b \times W}$

Here, κ_{b} is molal elevation constant

Depression in f.pt. of the solvent

The depression in freezing point $(\Delta T \text{ or } \Delta T_f)$ of a solvent is the difference in the freezing point of the pure solvent (T_s) and the solution (T_{sol}) .

 $T_s - T_{sol} = \Delta T_f \quad \mathbf{OI} \quad \Delta T$

<mark>∛</mark>Saral

Å

Important relations concerning depression in freezing point.

(i) $\Delta T_f \propto p^0 - p$

Here, ^{p°-p} is Depression in freezing point.

(11) $\Delta T_f = K_f \times m$

Here, $K_f =$ molal depression constant m = Molality of the solution; $\Delta T_f =$ Depression in freezing point.

As you know, $m = \frac{W \times 1000}{W}$

Thus,

 $\Delta T_f = \frac{1000 \times K_f \times w}{m \times W} \quad \mathbf{O1} \quad m = \frac{1000 \times K_f \times w}{\Delta T_f \times W}$

Where κ_{f} is molal depression constant.

Van't Hoff's factor (i): In 1886, Van't Hoff introduced a factor '*i*' called Van't Hoff's factor, to express the extent of association or dissociation of solutes in solution. It is ratio of the normal and observed molecular masses of the solute, *i.e.*,

```
i = \frac{\text{Normal molecular mass}}{\text{Observed molecular mass}}
Relative lowering of vapour pressure = \frac{P_A^o - P_A}{P^o} = iX_B
```

Elevation of boiling point, $\Delta T_b = ik_b m$ Depression in freezing point, $\Delta T_f = ik_f m$

Å

∛Saral

Osmotic pressure, $\pi = \frac{inRT}{V}$; $\pi = iCRT$

From the value of 'i', it is possible to calculate degree of dissociation or degree of association of substance.

Degree of dissociation (α) : or ions.

The fraction of total molecules that dissociate into simpler mole cules or ions is known as Degree of dissociation.

 $\alpha = \frac{i-1}{m-1}$; *m*= number of particles in solution

Degree of association (α) :

The fraction of the total number of molecules which associate or combine together resulting in a bigger molecules being forme d.

 $\alpha = \frac{i-1}{1/m-1}$; *m* = number of particles in solution.