Å

<mark>∛</mark>Saral

Chemical Kinetics

Rate of a reaction

The rate (speed or velocity) of a reaction is the change in concentration in per unit time.

 $\frac{\Delta x}{\Delta t}$ **Of** $\frac{dx}{dt} = \left(\frac{x_2 - x_1}{t_2 - t_1}\right)$

where Δx or dx is the concentration change, *i.e.*, (x_2-x_1) in the time interval Δt or dt, *i.e.*, (t_2-t_1) .

Law of mass action and Rate constant

Law of mass action states that, the rate at which a substance reacts is directly proportional to its active mass and the rate at which a reaction takes place is proportional to the product of the active masses of the reacting substances.

• Rate constant for the reaction, $aA+bB \rightarrow$ product is

Rate = $\left(\frac{dx}{dt}\right) \propto [A]^a [B]^b$; $\left(\frac{dx}{dt}\right) = k[A]^a [B]^b$

Here, k is rate constant and it is also known as velocity constant.

If [A] = [B] = 1 mol / litre, then $\frac{dx}{dt} = k$

JEE | NEET | Class 8 - 10 Download eSaral App

Å

∛Saral

Thus, rate constant k is also called **specific reaction rate**.

• Its value depends on the nature of reactant, temperature and catalyst. It value is independent of reactants concentration.

• Unit of rate constant $= \left[\frac{\text{litre}}{\text{mol}}\right]^{n-1} \times \text{sec}^{-1}$

Here, n is order of reaction.

Some Reactions

S. No.	Chemical equation	Rate law
1.	$aA+bB \rightarrow product$	$\left(\frac{dx}{dt}\right) = k[A]^a[B]^b$
2.	$aA+bB \rightarrow product$	$\left(\frac{dx}{dt}\right) = k[A]^2[B]^0$
3.	$2H_2O_2 \xrightarrow{P_{I,\Delta}} 2H_2O + O_2$	$\left(\frac{dx}{dt}\right) = k[H_2O_2]$
4.	$CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} $	$\left(\frac{dx}{dt}\right) = k[CH_3COOC_2H_5]$
	$CH_3COOH + C_2H_5OH$	

∛Saral

5.	$C_{12}H_{22}O_{11} + H_2O \xrightarrow{H^+} C_{6}H_{12}O_{6} + C_{6}H_{12}O_{6}$ Glucose Fructose	$\left(\frac{dx}{dt}\right) = k[C_{12}H_{22}O_{11}]$
6.	$(CH_3)_3 CCl + OH^- \rightarrow (CH_3)_3 COH + Cl^-$	$\left(\frac{dx}{dt}\right) = k[(CH_3)_3 CCl]$
7.	$CH_3Cl + OH^- \rightarrow CH_3OH + Cl^-$	$\left(\frac{dx}{dt}\right) = k[CH_3Cl][OH^-]$
8.	$C_6H_5N_2Cl \xrightarrow{\Delta} C_6H_5Cl + N_2$	$\left(\frac{dx}{dt}\right) = k[C_6H_5N_2Cl]$
9.	$CH_{3}CHO \xrightarrow{\Delta} CH_{4} + CO$	$\left(\frac{dx}{dt}\right) = k[CH_3CHO]^{3/2}$
10.	$H_2O_2 + 2\Gamma + 2H^+ \rightarrow 2H_2O + I_2$	$\left(\frac{dx}{dt}\right) = k[H_2O_2][I^-]$
11.	$2O_3 \rightarrow 3O_2$	$\left(\frac{dx}{dt}\right) = k[O_3]^2[O_2]$

Rate constant and other parameters of different order reactions

Order	Rate constant	Unit of rate constant	(Half-life period) T ₅₀ =
0	$k_0 = \frac{x}{t}$	conc. time ⁻¹ (mol $L^{-1} s^{-1}$)	$\frac{a}{2k_0}$
1	$k_1 = \frac{2.303}{t} \log_{10} \left(\frac{a}{a-x} \right), \ C = C_0 e^{-k_1 t}$	time ⁻¹ (s^{-1})	$\frac{0.693}{k_1}$

JEE Main Chemistry Revision Notes

www.esaral.com

∛Saral

Å

Methods for determination of order of a reaction

Integration method

(i) The value of k is determined and checked for all sets of a, x and t.

(ii) If the value of k is constant, the used equation gives the order of reaction.

(iii) If all the reactants are at the same molar concentration, the kinetic equations are :

Å

<mark>∛</mark>Saral

Half-life method: The halflife may be described as the amount of time it takes for a rea ctant's concentration to fall to half of its original value.

This method is employed only when the rate law involved only one concentration term.

```
t_{1/2} \propto a^{1-n}, t_{1/2} = ka^{1-n}, \log t_{1/2} = \log k + (1-n)\log a
```

If we plot a graph of $\log_{t_{1/2}} vs \log a$, we gets a straight line with slope (1-n). We can find the order n by determining the slope.

If half-life at different concentration is given then,

 $(t_{1/2})_1 \propto \frac{1}{a_1^{n-1}}; (t_{1/2})_2 \propto \frac{1}{a_2^{n-1}}; \frac{(t_{1/2})_1}{(t_{1/2})_2} = \left(\frac{a_2}{a_1}\right)^{n-1}$

 $\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2 = (n-1) \left[\log_{10} a_2 - \log_{10} a_1 \right]$ $n = 1 + \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{(\log_{10} a_2 - \log_{10} a_1)}$

This relation can be used to find the 'n'.

Plots of half-lives Vs concentrations $(t_{1/2} \propto a^{1-n})$

Å

∛Saral

Graphical method:

A graphical method based on the respective rate laws, can also be used.

(i) If the plot of $\log(a-x)$ Vs t is a straight line, the reaction follows first order.

(ii) If the plot of $\frac{1}{(a-x)}$ Vs *t* is a straight line, the reaction follows second order.

(iii) If the plot of $\frac{1}{(a-x)^2}$ Vs *t* is a straight line, the reaction follows third order.

(iv) In general, for a reaction of nth order, a graph of $\frac{1}{(a-x)^{n-1}}$ Vs

t must be a straight line.

Plots from integrated rate equations _ ↓ Conc. [A] $\frac{1}{\left[A\right]^2}$ log. [A] $\overline{[A]}$

<mark>∛</mark>Saral

Arrhenius equation

Arrhenius proposed a quantitative relationship between rate constant and temperature as,

The equation is called Arrhenius equation.

In which constant *A* is known as *frequency factor*. This factor is related to number of binary molecular collision per second per litre.

 E_a is the activation energy.

T is the absolute temperature and

R is the gas constant

Both A and E_a are collectively known as *Arrhenius* parameters.

Taking logarithm equation (i) may be written as,

The value of activation energy (E_a) increases, the value of *k* decreases and therefore, the reaction rate decreases.

where k_1 and k_2 are rate constant at temperatures T_1 and T_2 respectively $(T_2 > T_1)$.