

General Principles and Processes of Isolation of Metals

Occurrence of Metals

Metal	Name of the ore	Composition
Pb	Galena	PbS
Zn	Zinc blende	ZnS
Hg	Cinnabar	HgS
Fe	Iron pyrites	FeS_2

Oxidised ores: In these ores, metals are present as their oxides or oxysalts such as carbonates, nitrates, sulphates, phosphates, silicates, etc.

Important ores of this group are listed below, Oxides

Zincite	ZnO
Rutile	TiO_2
Ilmenite	$FeO.TiO_2$
Haematite	Fe_2O_3
Magnetite	Fe_3O_4
Limonite	$Fe_2O_3.3H_2O$
Bauxite	$Al_2O_3.2H_2O$

Corundum	Al_2O_3
Diaspore	$Al_2O_3.H_2O$
Chromite	FeO.Cr ₂ O ₃
Chromeochre	Cr_2O_3

Carbonates

Malachite	CuCO3.Cu(OH)
	2
Azurite	$Cu(OH)_2.2CuC$
	O_3
Cerussite	$PbCO_3$
Siderite	FeCO ₃
Magnesite	$MgCO_3$
Lime stone	$CaCO_3$
Dolomite	CaCO ₃ .MgCO ₃
Calamine	$ZnCO_3$

Nitrates

Chile saltpetre	NaNO ₃
Salt petre	KNO ₃

Sulphates

Polyhalite	$K_2SO_4.MgSO_4.CaS$
	$O_4.2H_2O$
Epsom salt	$MgSO_4.7H_2O$
Barytes	BaSO ₄
Gypsum	CaSO ₄ .2H ₂ O

Phosphates and Silicates

Fluor-apatite	$3Ca_3(PO_4)_2.CaF_2$
Felspar	KAlSi ₃ O ₈
Talc	$Mg_2(Si_2O_5).Mg(OH)$
	2
Asbestos	$CaMg_3.(SiO_3)_4$

Halide ores: Metallic halides are very few in nautre. Chlorides are most common. For example.

Common salt NaCl ;Horn silver AgCl

Carnallite KCl. MgCl₂.6H₂O

The important fluoride ores are

Fluorspar CaF2; Cryolite Na3AlF6

Extraction of Metals: Metallurgy

The extraction of a pure metal from its ore is called *metallurgy*.

Physical Methods (i) *Gravity Separation or levigation*: This process of concentration is based on the difference in the specific gravity of the ore and gangue. The sieved ore is either subjected to dry centrifugal

Froth floatation process: In some cases for example, sulphides ores of copper, zinc and lead concentration is brought by this method.

Electromagnetic separation: If the mineral and not gangue is attracted by a magnet, it can be concentrated by magnetic separation.

Chemical methods

(i) *Calcination*: In this process the concentrated ore is heated in a suitable furnace generally in reveratory furnace much below its **melting point** in absence of air.

For example,

```
Al_2O_3.2H_2O \rightarrow Al_2O_3 + 2H_2O \ 2Fe_2O_3.3H_2O \rightarrow 2Fe_2O_3 + 6H_2O ZnCO_3 \rightarrow ZnO + CO_2 \quad • \quad CaCO_3 \rightarrow CaO + CO_2 CuCO_3.Cu(OH)_2 \rightarrow 2CuO + CO_2 + H_2O
```

(ii) *Roasting*: The process of heating the ores strongly in presence of air with or without certain substances, below its melting point is termed as roasting.,

```
2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2
```


the treatment of the ore with a

(iii) *Leaching*: It involves the treatment of the ore with a suitable reagent as to make it soluble while impurities remain insoluble.

$$Al_2O_3$$
. $2H_2O + 2NaOH \rightarrow 2NaAlO_2 + 3H_2O$

Gold and silver are also extracted from their native ores by Leaching (Mac-Arthur forest cyanide process).

(iv) Smelting: The process of extracting a metal in the state of fusion is called smelting.

$$SnO_2 + 2C \rightarrow Sn + 2CO$$
; $ZnO + C \rightarrow Zn + CO$
 $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

Flux and slag: Flux is a substance that is added during smelting to convert infusible silicons or earthy impurities into fusible material known as slag.

Impurities + Flux = Slag.

Summary of the Extraction of Metals

&Saral

Metal	Main Occurrence	Main method of Extraction
Sodium	Common Salt, NaCl	Electrolysis of fused NaCl with CaCl ₂
Magnesium	Carnallite, KCl.MgCl ₂ .6H ₂ O	Electrolysis of fused MgCl ₂ with KCl
	Magnesite MgCO ₃	
Calcium	• Lime stone, CaCO ₃ Gypsum,	Electrolysis of fused CaCl ₂ and CaF ₂
	CaSO ₄ .2H ₂ O	
Aluminium	Bauxite, Al ₂ O ₃ .2H ₂ O	Electrolysis of Al_2O_3 in molten Na_3AlF_6 (cryolite)
Copper	Copper pyrites, CuFeS ₂ Cuprite,	Partial oxidation of sulphide ore
	Cu ₂ O	$(2Cu2O + Cu2S \longrightarrow 6Cu + SO2).$
Silver	Argentite, Ag ₂ S Native silver	Hydrometallurgy
	_	$Ag_2S + 4NaCN \longrightarrow 2NaAg (CN)_2 + Na_2S$
		$2\text{NaAg } (\text{CN})_2 + \text{Zn} \longrightarrow \text{Na}_2 \text{Zn } (\text{CN})_4 + 2\text{Ag}$
Zinc	Zinc Blende, ZnS Calamine, ZnCO ₃	Reduction of ZnO with carbon or electrolysis of ${ m ZnSO_4}$
		$ZnO+C\longrightarrow Zn+CO$
Lead	• Galena, PbS	Reduction of PbO with carbon $PbO+C \longrightarrow Pb+CO$
Tin	• Cassiterite, SnO ₂	Reduction of SnO_2 with carbon
		$SnO_2 + 2C \longrightarrow Sn + 2CO$
Iron	• Haematite, Fe ₂ O ₃ Magnetite, Fe ₃ O ₄	Reduction of oxide with carbon monoxide
		$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$
Chromium	• Chromite, FeO.Cr ₂ O ₃ .	Reduction of Cr_2O_3 with Al
		$Cr_2O_3 + 2Al \longrightarrow 2Cr + Al_2O_3$
Nickel	Millerite, NiS	duction of NiO with CO
		$NiO + 5CO \longrightarrow Ni(CO)_4 + CO_2;$
		$Ni(CO)_4 \longrightarrow Ni + 4CO$
Mercury	Cinnabar, HgS	Direct reduction of HgS by heat alone
		$HgS + O_2 \longrightarrow Hg + SO_2$