

Purification and Characterization of Organic Compounds

Purification of organic compounds: A large number of methods are available for the purification of substances

- (i) *Simple crystallisation*: This is the most common method used to purify organic solids. It is based upon the fact that whenever a crystal is formed, it tends to leave out the impurities.
- (ii) *Fractional crystallisation*: The process of separation of different components of a mixture by repeated crystallisations is called fractional crystallisation.
- (iii) *Sublimation*: Certain organic solids on heating directly change from solid to vapour state without passing through a liquid state, such substances are called *sublimable* and this process is called *sublimation*.

(iv) *Steam distillation*: This method is applicable for the separation and purification of those organic compounds (solids or liquids) which (a) are insoluble in water (b) are

volatile in steam (c) possess a high vapour pressure (10-15 *mm Hg*) at 373 *K* and (d) contain non-volatile impurities. (vii) *Azeotropic distillation*: Azeotropic mixture is a mixture having constant boiling point. The most familiar example is a mixture of ethanol and water in the ratio of 95.87 : 4.13 (a ratio present in rectified spirit). It boils at 78.13°*C*.

Types of chromatography: Depending upon the nature of the stationary and the mobile phases, the different types of chromatographic techniques commonly used are in a given table,

Type of	Mobile/S	Uses
Chromatography	tationary	
	Phase	
Adsorption or	Liquid/S	Large scale separations
column	olid	
chromatography		
Thin-layer	Liquid/S	Qualitative analysis
chromatography	olid	(identification and
		characterization of organic
		compounds)
High	Liquid/S	Qualitative and quantitative
performance	olid	analysis
liquid		

chromatography		
Gas-liquid	Gas/Liqu	Qualitative and quantitative
chromatography	id	analysis
(GLC)		
Partition	Liquid/L	Qualitative and quantitative
chromatography	iquid	analysis of polar organic
or ascending		compounds (sugars, α-amino
paper		acids and inorganic
chromatography		compounds)

Qualitative analysis:

Carbon is an essential component of an organic compound. The following method is known as the copper oxide test.

$$C + 2CuO \xrightarrow{\text{Heat}} CO_2 + 2Cu \xrightarrow{\bullet}$$

$$Ca(OH)_2 + CO_2 \xrightarrow{\text{Milky}} CaCO_3 + H_2O$$

$$\text{Lime water} \xrightarrow{\text{Heat}} H_2O + Cu \xrightarrow{\bullet}$$

$$CuSO_4 + 5H_2O \xrightarrow{\text{Colourles } s} \text{Blue}$$

$$\text{(Anhydrous)} \xrightarrow{\text{(Hydrated)}}$$

Lassaigne method

This is used to detect nitrogen, halogen and sulphur.

Lassaigne method (Detection of elements)

Element	Sodium Extract (S.E.)	Confirmed Test	Reaction
Nitrogen	$Na + C + N \xrightarrow{\Delta} NaCN$ (S.E.)	S.E.+ FeSO ₄ + NaOH , boil and cool + FeCl ₃ + conc.HCl Blue or green colour	$2 \text{NaCN} + \text{FeSO}_4 \longrightarrow \text{Fe(CN)}_2 + \text{Na}_2 \text{SO}_4$ $\text{Fe(CN)}_2 + 4 \text{NaCN} \longrightarrow \text{Na}_4 [\text{Fe(CN)}_6]$ $\text{Sodium ferrocyanide}$ $3 \text{Na}_4 [\text{Fe(CN)}_6] + 4 \text{FeCl}_3 \xrightarrow{\text{HCl}} \text{Fe}_4 [\text{Fe(CN)}_6]_3 + 12 \text{NaC}_4 \text{Ferric ferrocyanide}$ $\text{Ferric ferrocyanide}$ (Prussian blue)
Sulphur	$2 \operatorname{Na} + \operatorname{S} \xrightarrow{\Delta} \operatorname{Na}_{2} \operatorname{S} $ (S.E.)	(i) S.E. + sodium nitro prusside (ii) S.E+ CH ₃ CO ₂ H + (CH ₃ CO ₂) ₂ Pb A black ppt.	$ \begin{array}{c} (i) \\ \text{Na}_2 \text{S} + \text{Na}_2 [\text{Fe}(\text{CN})_5 \text{NO}] \longrightarrow \text{Na}_4 [\text{Fe}(\text{CN})_5 \text{NO}.\text{S}]} \text{ or } \\ \text{Sodium nitroprusside} & (\text{Purple}) \\ \\ \text{Na}_3 [\text{Fe}(\text{ONSNa})(\text{CN})_5] \\ \text{Sodium thionitroprusside} \\ (\text{Violet}) \\ \\ (ii) \\ \text{Na}_2 \text{S} + (\text{CH}_3 \text{COO})_2 \text{Pb} \xrightarrow{\text{CH}_3 \text{COOH}} \xrightarrow{\text{PbS}} \downarrow + 2 \text{CH}_3 \text{COONa} \\ \text{black ppt.} \end{array} $
Halogen	$Na + X \xrightarrow{\Delta} NaX$ (S.E.) $(X = Cl, Br, I)$	S.E. +HNO ₃ + AgNO ₃ (i) White <i>ppt</i> soluble in <i>aq</i> NH ₃ confirms Cl. (ii) Pale yellow <i>ppt</i> partially soluble in aq. NH ₃ confirms <i>Br</i> . (iii) Yellow <i>ppt</i> insoluble in <i>aq</i> NH ₃ confirms <i>I</i> .	$NaX + AgNO_{3} \xrightarrow{HNO_{3}} AgX \downarrow ppt$ $AgCl + 2NH_{3}(aq) \longrightarrow [Ag(NH_{3})_{2}]Cl$ White ppt soluble $AgBr + 2NH_{3}(aq) \rightarrow [Ag(NH_{3})_{2}]Br$ Yellow ppt. Partially soluble $AgI + NH_{3}(aq) \longrightarrow Insoluble$
Nitrogen and sulphur together	$Na + C + N + S \xrightarrow{\Delta} NaCNS$ (S.E.) with excess of Na the thiocyanate formed decomposes into cyanide and sulphide. $NaCNS + 2Na \rightarrow NaCN + Na_2S$	As in test for nitrogen; instead of green or blue colour, blood red colouration confirms presence of N and S both.	3NaCNS + FeCl ₃ → [Fe(SCN) ₃ or [Fe(SCN)]Cl ₂ + 3NaCl Ferric sulphocyanide (Blood red colour)

Calculation of Empirical and Molecular formula

(i) *Empirical formula:* Empirical formula of a substance gives the simplest whole number ratio between the atoms of the various elements present in one molecule of the

&Saral

substance. For example, empirical formula of glucose is $_{CH_2O}$, *i.e.* for each carbon atom, there are two H-atoms and one oxygen atom. Its molecular formula is however, $_{C_6H_{12}O_6}$.

(ii) *Molecular formula*: *Molecular formula of a substance* gives the actual number of atoms present in one molecule of the substance.

Molecular formula = $_{n\times}$ Empirical formula Where, n is a simple integer 1, 2, 3,..... etc. given by the equation,

 $n = \frac{\text{Molecular mass of the compound}}{\text{Empirical formula mass of the compound}}$