Å

BIOMOLECULES

DEFINITION OF CARBOHYDRATES

Compounds having general formula $C_n(H_2O)_m$ are commonly known as *carbohydrates*. (the French word *hydrate de carbone* meaning hydrates of carbon) where n and m are simple numbers usually equal to or greater than two.

Classification

Carbohydrates are mainly divided into following three classes-

- (I) Monosaccharides
- (II) Disaccharides
- (III) Polysaccharides

(I) Monosaccharides

Those carbohydrates which generally contains 4 to 10 C–atoms and cannot be hydrolysed into simpler compounds are known as *monosaccharides*.

Aldotriose – 3C atoms with one – CHO group (glyceraldehyde)

Å

∛Saral

Ketotriose-3C atoms with one > C = O group (Dihydroxyacetone)

(II) Disaccharides

Disaccharides are formed when two monosaccharides (generally hexoses) combine by condensation process.

 $C_6H_{12}O_6 + C_6H_{12}O_6 \xrightarrow[hydrolysis]{Condensation} C_{12}H_{22}O_{11} + H_2O$

Example:

Maltose (malt sugar) = Glucose + glucose

Lactose (milk sugar) = Glucose + galactose

Sucrose (cane sugar) = Glucose + fructose

(III) Polysaccharides

Those carbohydrates which can be hydrolysed to many (hundred or even thousands) of monosaccharide units are called polysaccharides.

For example, starch & cellulose \Rightarrow Homopolysaccharides

 $C_6(H_{10}O_5)_n + nH_2O \xrightarrow{}{}_{H^+} nC_6H_{12}O_6$

(Starch)

Inulin \Rightarrow Heteropolysaccharide

<mark>∛</mark>Saral

Å

PROTEINS

These are complex nitrogeneous natural polymers of amino acids. Amino acids are the essential component of proteins.

CLASSIFICATION

A variety of classification of amino acids are possible.

CLASSIFICATIONS OF PROTEINS

According to Structure

Type of proteins	Nature	Functions
Fibrous proteins	brous proteins Secondary structure most important.	Perform structural function in cells and organisms.
	Insoluble in water, physically tough, long parallel polypeptide chains cross—linked at intervals forming long fibres or sheets.	Examples: Collagen (Tendons, bone, connective tissues) Myosin (muscles) Silk (spider, web) Keratin (hair, horn, nails, feathers)

Globular proteins	Tertiary structure	Form enzymes,
	most important,	antibodies and
	polypeptide chains	some hormones
	tightly folded to	e.g. Insulin
	form spherical	
	shape. Easily	
	soluble	

According to composition

Conjugated proteins	Prosthetic group	Occurrence
Phosphoprotein	Phosphoric acid	Casein of milk, vitellin of egg yolk.
Glycoprotein	Carbohydrate	Membrane structure mucin (component of saliva)
Nucleoprotein	Nucleic acid	Component of viruses chromosomes, Ribosome structure.

∛Saral

Ą

Chromo protein	Pigment	Haemoglobin (iron
		containing pigment
		present in blood)
		Phytochrome (plant pigment)

Functions of Amino Acids

Amino acids-serves as:

- (1) Building block of proteins
- (2) As precursors of
- (a) Hormones (b) Purines
- (c) Pyrimidines (d) Porphyrins
- (e) Vitamins

Some examples of enzymes

Carbonic anhydrase	$H_2CO_3 \longrightarrow CO_2 + H_2O$
Pepsin	Proteins \longrightarrow Amino acids
Trypsin	Proteins \longrightarrow Amino acids
Nucleases	DNA, RNA → Nucleotides
DNA Polymerase	Deoxynucleotide triphosphates → DNA
RNA Polymerase	Ribonucleotide triphosphates \longrightarrow RNA
Enzymes	Reaction catalysed
Maltase	Maltose $\longrightarrow 2 \times \text{Glucose}$
Lactase	Lactose \longrightarrow Glucose + Galactose
Amylase	Starch \longrightarrow n × Glucose
Invertase	Sucrose → Glucose + Fructose
Urease	Urea \longrightarrow CO ₂ + NH ₃

∛Saral

Å

NUCLEIC ACIDS

Nucleic acids play an essential role in transmission of the hereditary characteristics and the biosynthesis of proteins.. There are two classes of nuclei acids: DNA (deoxyribonucleic acid) and RNA (ribonucleic acid).

Comparison between DNA and RNA

Characters	DNA	RNA
Role	Always act as	Synthesis of
	genetic material.	proteins,
		sometimes act as
		genetic material.
Location	Primarily in	Cytoplasm,
	nucleus but also	nucleus
	in cell organelles.	
Pyrimidine bases	Cytosine (C),	Cytosine (C),
	Thymine(T)	Uracil (U)
Pentose sugar	Deoxyribose	Ribose sugar
	sugar	
Hydrolyzing	DNase	Rnase
enzymes		

Functions of Nucleic acids

Nucleic acids have two important functions:

(i) Replication and (ii) Protein synthesis

JEE Main Chemistry Revision Notes