SETS, RELATIONS AND FUNCTIONS

Set:

A set is a collection of well-defined objects i.e. the objects follow a given rule or rules.

Elements of a set:

The members of a set are called its elements. If an element x is in set A, we say that x belongs to A and write $x \in A$. If the element x is not in A then we write $x \notin A$.

Examples of sets:

1. The set of vowels in the alphabet of English language.
2. The set of all points on a particular line.

Some special sets:

(i)Finite and infinite sets:

A set A is finite if it contains only a finite number of elements; we can find the exact number of elements in the set. Otherwise, the set is said to be an infinite set.
Example:
$Q=$ set of all rational numbers $=\left\{\frac{p}{q} \cdot p, q \in Z, q \neq 0\right\}$
$R=$ set of all real numbers $=\{x: x$ is a rational and an irrational number $\}$
$\mathrm{C}=$ set of all complex numbers $=\{x+i y ; x, y \in R\}$
(ii) Null set:

A set which does not contain any element is called a null set and is denoted by φ. A null set is also called an empty set.
(iii) Singleton set:

A set which contains only one element is called a singleton set.
(viii) Power set:

The power set of a set A is the set of all of its subsets, and is denoted by $P(A)$ e.g. if $A=\{4,5,6\}$ then
$P(A)=\{\varphi,\{4\},\{5\},\{6\},\{4,5\},\{5,6\},\{4,5,6\}\}$.
Note: The null set φ and set A are always elements of $P(A)$.

Theorem: If a finite set has n elements, then the power set of A has 2^{n} elements.
Operations on sets:
The operations on sets, by which sets can be combined to produce new sets.
(i) Union of sets:

The union of two set A and B is defined as the set of all elements which are either in A or in B or in both. The union of two sets is written as $A \cup B$;

(ii) Intersection of sets:

(i) The intersection of two sets A and B is defined as the set of those elements which are in both A and B and is written as
$A \cap B=\{x: x \in A$ and $x \in B\}$
(ii) The intersection of n sets $A_{1}, A_{2} \ldots \ldots . . A_{n}$ is written as

$$
\bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap A_{3} \ldots \ldots \ldots \cap A_{n}=\left\{x: x \in A_{i} \text { for all } i, 1 \leq i \leq n\right\} .
$$

Disjoint sets:

Two set A and B are said to be disjoint, if there is no element which is in both A and B, i.e. $A \cap B=\varphi$;
\checkmark The properties of the complement of sets are known as DeMorgan laws, which are
(i) $A^{c}-B^{c}=B-A$
(ii) $(A \cup B)^{c}=A^{c} \cap B^{c}$
(iii) $(A \cap B)^{\circ}=A^{c} \cup B^{c}$
\checkmark If A and B are not disjoint, then
(i) $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
(ii) $n(A \cup B)=n(A-B)+n(B-A)+n(A \cap B)$
(iii) $n(A)=n(A-B)+n(A \cap B)$
(iv) $n(B)=n(B-A)+n(A \cap B)$

(vi) Cartesian product of sets:

Let a be an arbitrary element of a given set A i.e. $a \in A$ and b be an arbitrary element of B i.e. $b \in B$. Then the pair (a, b) is an ordered pair. Obviously $(\mathrm{a}, \mathrm{b}) \neq(\mathrm{b}, \mathrm{a})$. The cartesian product of two sets A and B is defined as the set of ordered pairs (a, b). The cartesian product is denoted by $A \times B$
$\Rightarrow A \times B=\{(a, b) ; a \in A, b \in B\}$.

Relation:

Let A and B be two sets. A relation R from the set A to set B is a subset of the Cartesian product $A \times B$. Further, if $_{(x, y) \in R, \text { then we say }}$ that x is R-related to y and write this relation as $x R y$. Hence $R\{(x, y) ; x \in A, y \in B, x R y\}$.

Domain and Range of a relation: Let R be a relation defined from a A set to a set B, i.e. $R \subseteq A \times B$. Then the set of all first elements of the ordered pairs in R is called the domain of R. The set of all second elements of the ordered pairs in R is called the range of R. That
$D=$ domain of $R=\{x:(x, y) \in R\}$ or $\{x: x \in A$ and $(x, y) \in R\}$,
$R^{*}=$ range of $R=\{y:(x, y) \in R\}$ or $\{y: y \in \operatorname{Band}(x, y) \in R\}$.
Clearly $D \subseteq A$ and $R^{*} \subseteq B$.

FUNCTIONS:

A mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be a function if each element in the set X has its image in set Y . Every element in set X should have one and only one image.
Let $f: R \rightarrow R$ where $y=x^{3}$. Here for each $x \in R$ we would have a unique value of y in the set R
Set ' X ' is called domain of the function ' f '.
Set ' Y ' is called the co-domain of the function ' f '.

Algebra of Functions:

Let us consider two functions,
$f: D_{1} \rightarrow R$ and $g: D_{2} \rightarrow R$. We describe functions $f+g, f-g, f . g$ and f / g as follows:

- $\mathrm{f}+\mathrm{g}: \mathrm{D} \rightarrow \mathrm{R}$ is a function defined by
- $(\mathrm{f}+\mathrm{g}) \mathrm{x}=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \quad$ where $\mathrm{D}=\mathrm{D}_{1} \cap \mathrm{D}_{2}$
- $\mathrm{f}-\mathrm{g}: \mathrm{D} \rightarrow \mathrm{R}$ is a function defined by
- $(\mathrm{f}-\mathrm{g}) \mathrm{x}=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})$ where $\mathrm{D}=\mathrm{D}_{1} \cap \mathrm{D}_{2}$
- f.g: $\mathrm{D} \rightarrow \mathrm{R}$ is a function defined by
- by (f.g) $\mathrm{x}=\mathrm{f}(\mathrm{x})$. $\mathrm{g}(\mathrm{x}) \quad$ where $\mathrm{D}=\mathrm{D}_{1} \cap \mathrm{D}_{2}$
- $\mathrm{f} / \mathrm{g}: \mathrm{D} \rightarrow \mathrm{R}$ is a function defined by
- $(f / g) x=\frac{f(x)}{g(x)} \quad$ where $D=\left\{x: x \in D_{1} \cap D_{2}, g(x) \neq 0\right\}$

TYPE OF FUNCTION

One-One and Many-One Functions:

When every element of domain of a function has a distinct image in the co-domain, the function is said to be One-One. If there are at least two elements of the domain whose images are the same, the function is known as Many-One.

Onto and Into Functions:

For every point y in b , there is some point x in A such the $f(x)=y$. It is called onto function. When the codomain y which is not an image of any element in the domain x, then function is onto.

Even and Odd Functions:

- $f(x)-f(-x)=0$ for even function and $f(x)+f(-x)=0$ for odd functions .

Periodic Function

If $f(x)$ is periodic with period t, then a $f(x)+b$ where $a, b \in R(a$ $\neq 0$) is also periodic with period t

Some Important function and their domain and range

FUNCTION F(X)	DOMAIN	RANGE
$\sin \mathrm{x}$	$(-\infty, \infty)$	$[-1,1]$
$\cos \mathrm{x}$	$(-\infty, \infty)$	$[-1,1]$
$\mathrm{a}^{\mathrm{x}} \mathrm{a}>1$	R	$(0, \infty)$
$\log _{\mathrm{a}} \mathrm{x}, \mathrm{a}>0$ and $\neq 1 \quad \mathrm{a}>0$ and $\neq 1$	$(0, \infty)$	$(-\infty, \infty)$
$[\mathrm{x}]$	R	I
$\|\mathrm{x}\|$	R	$[0, \infty)$
$\{\mathrm{x}\}$	R	$[0,1)$

