PERMUTATION AND COMBINATIONS

FUNDAMENTAL PRINCIPLE OF COUNTING

1. MULTIPLICATION PRINCIPLE OF COUNTING

If a job can be done in m ways, and when it is done in any one of these ways another job can be done in n, then both the jobs together can be done in $m n$ ways.
2. ADDITION PRINCIPLE OF COUNTING

If a job can be done in m ways and another job can be done in n ways then either of these jobs can be done in $m+n$ ways.

PERMUTATIONS

Each of different arrangement which can be made by taking some or all of a number of things is called a permutation.

1. COUNTING FORMULAE FOR PERMUTATION

To find the value of ${ }^{n} \boldsymbol{P}_{r}$

$$
\begin{aligned}
{ }^{n} P_{r} & =n(n-1)(n-2) \ldots \ldots(n-r+1) \\
& =\frac{n!}{(n-r)!} \quad \text { using factorial notation } n!=n(n-1) \ldots \ldots
\end{aligned}
$$

3.2.1.) where $0 \leq r \leq n$.

In particular

- The number of permutations of n different things taken all at a time $={ }^{n} P_{n}=n$!
- ${ }^{n} P_{0}=1,{ }^{n} P_{1}=n$ and ${ }^{n} P_{n-1}={ }^{n} P_{n}=n$!
- ${ }^{n} P_{r}=n\left({ }^{n-1} P_{r-1}\right)$ where $r=1,2, \ldots \ldots .$.

3. PERMUTATION OF n DISTINCT OBJECT WHEN REPETITION IS ALLOWED

- The number of permutations of n different things taken r at time when each thing may be repeated any number of times is n^{r}.

4. ARRANGEMENT OF n THINGS WHEN ALL ARE NOT DISTINCT

- The number of permutations of n things taken all at a time, where x are alike of one kind, y are alike of second kind and z are alike of third kind and the rest $n-(x+y+z)$ are all distinct is given by

$$
\frac{\mathrm{n}!}{\mathrm{x}!\mathrm{y}!\mathrm{z}!}(x+y+z \leq n)
$$

CIRCULAR PERMUTATIONS

In the event of the given n things arranged in a circular or even elliptical permutation -and in this case the first and the last thing in the arrangement are indistinguishable - the number of permutations is $(n-1)!$.

NUMBER OF CIRCULAR PERMUTATIONS OF n DIFFERENT THINGS TAKEN r AT A TIME

CASE I: If clockwise and anticlockwise orders are taken as different, then the required number of circular permutations $=\frac{n^{n}}{r}$.
CASE II: If clockwise and anticlockwise orders are taken as not different, then the required number of circular permutations $=\frac{n_{P_{r}}}{2 r}$

COMBINATIONS

Each of different grouping or selections that can be made by some or all of a number of given things without considering the order in which things are placed in each group, is called combinations.

1. COUNTING FORMULAE FOR COMBINATIONS

The number of combinations of n different things taken r at a time is given by ${ }^{n} C_{r}$ or $C(n, r)$

$$
{ }^{n} C_{r}=\frac{n!}{(n-r)!r!} \quad(0 \leq r \leq n)
$$

as ${ }^{n} C_{r}=\frac{{ }^{n} P_{r}}{r!}$
Key results on ${ }^{n} C_{r}$

- ${ }^{n} C_{0}={ }^{n} C_{n}=1$
- $\quad{ }^{n} C_{1}=n$ There are n ways to select one thing out of n distinct things.
- ${ }^{n} C_{r}={ }^{n} C_{n-r}$
- If n is odd then the greatest value of ${ }^{n} C_{r}$ is ${ }^{n} C_{\frac{n+1}{2}}$ or ${ }^{n} C_{\frac{n-1}{2}}$.
- If n is even then the greatest value of ${ }^{n} C_{r}$ is ${ }^{n} C_{n / 2}$.

6. SELECTION FROM DISTINCT/IDENTICAL OBJECTS (I) SELECTION FROM DISTINCT OBJECTS

- The number of ways (or combinations) of selection from n distinct objects, taken at least one of them is

$$
{ }^{n} C_{1}+{ }^{n} C_{2}+{ }^{n} C_{3}+\ldots \ldots .+{ }^{n} C_{n}=2^{n}-1
$$

(II) SELECTION FROM IDENTICAL OBJECTS

The number of ways of selections of atleast one out of $a_{1}+a_{2}+$ $a_{3}+\ldots \ldots+a_{n}+k$ objects, where a_{1} are alike of one kind, $\ldots \ldots \ldots a_{n}$ are alike of nth kind and k are distinct is

$$
\left(a_{1}+1\right)\left(a_{2}+1\right) \ldots \ldots \ldots\left(a_{n}+1\right) 2^{k}-1 .
$$

8. DIVISION OF DISTINCT OBJECT IN TO GROUPS

 In the case of grouping we have the following. If $m+n+p$ things are divided into 3 groups one containing m, the second n and the third p things; number of groupings is ${ }^{(m+n+p)} C_{m} \cdot{ }^{(n+p)} C_{n} \cdot{ }^{p} C_{\rho}$$=\frac{(m+n+p)!}{m!n!p!}$ where m, n, p are distinct natural numbers.

In general, the number of ways in which $m n$ different things can be divided equally into m distinct groups is $\frac{(m n)!}{(n!)^{m}}$ when order of groups is important.

9. DIVISION OF IDENTICAL OBJECTS INTO GROUPS

The number of ways of division or distribution of n identical things into r different groups is ${ }^{n+r-1} C_{r-1}$ or ${ }^{n-1} C_{r-1}$ according as empty groups are allowed or not allowed.
10. ARRANGEMENTS IN GROUPS

The number of ways of distribution and arrangement of n distinct things into r different groups is $n!{ }^{n+r-1} C_{r-1}$ or n ! ${ }^{n-1} C_{r-1}$ according as empty groups are allowed or not allowed.

