Å

<mark>∛</mark>Saral

PERMUTATION AND COMBINATIONS

FUNDAMENTAL PRINCIPLE OF COUNTING 1. MULTIPLICATION PRINCIPLE OF COUNTING

If a job can be done in *m* ways, and when it is done in any one of these ways another job can be done in *n*, then both the jobs together can be done in *mn* ways.

2. ADDITION PRINCIPLE OF COUNTING

If a job can be done in m ways and another job can be done in n ways then either of these jobs can be done in m + n ways.

PERMUTATIONS

Each of different arrangement which can be made by taking some or all of a number of things is called a permutation.

1. COUNTING FORMULAE FOR PERMUTATION To find the value of ${}^{n}P_{r}$

 ${}^{n}P_{r} = n (n-1) (n-2) \dots (n-r+1)$

 $= \frac{n!}{(n-r)!}$ (using factorial notation n! = n(n-1)

3.2.1.) where $0 \leq r \leq n$.

In particular

• The number of permutations of *n* different things taken all at a time = ${}^{n}P_{n} = n!$

- ${}^{n}P_{0} = 1$, ${}^{n}P_{1} = n$ and ${}^{n}P_{n-1} = {}^{n}P_{n} = n!$
- ${}^{n}P_{r} = n \ ({}^{n-1}P_{r-1})$ where $r = 1, 2, \ldots, n$.

∛Saral

3. PERMUTATION OF *n* DISTINCT OBJECT WHEN REPETITION IS ALLOWED

• The number of permutations of *n* different things taken *r* at time when each thing may be repeated any number of times is *n*^{*r*}.

4. ARRANGEMENT OF *n* THINGS WHEN ALL ARE NOT DISTINCT

The number of permutations of *n* things taken all at a time, where *x* are alike of one kind, *y* are alike of second kind and *z* are alike of third kind and the rest *n*-(*x* + *y* + *z*) are all distinct is given by

 $\frac{n!}{x!y!z!} \quad (x+y+z \le n)$

CIRCULAR PERMUTATIONS

In the event of the given n things arranged in a circular or even elliptical permutation –and in this case the first and the last thing in the arrangement are indistinguishable – the number of permutations is (n-1) !.

NUMBER OF CIRCULAR PERMUTATIONS OF *n* DIFFERENT THINGS TAKEN *r* AT A TIME

Å

CASE I: If clockwise and anticlockwise orders are taken as different, then the required number of circular permutations $=\frac{^{n}P_{r}}{r}$.

CASE II: If clockwise and anticlockwise orders are taken as not different, then the required number of circular permutations $=\frac{{}^{n}P_{r}}{2r}$

COMBINATIONS

Saral

Each of different grouping or selections that can be made by some or all of a number of given things without considering the order in which things are placed in each group, is called combinations.

1. COUNTING FORMULAE FOR COMBINATIONS

The number of combinations of *n* different things taken *r* at a time is given by ${}^{n}C_{r}$ or C(n, r)

$${}^{n}C_{r} = \frac{n!}{(n-r)! r!} \quad (0 \le r \le n)$$
$${}^{n}C_{r} = \frac{{}^{n}P_{r}}{r!}$$

7:

as

Key results on ${}^{n}C_{r}$

•
$${}^{n}C_0 = {}^{n}C_n = 1$$

• ${}^{n}C_{1} = n$ There are *n* ways to select one thing out of *n* distinct things.

• ${}^{n}C_{r} = {}^{n}C_{n-r}$

• If *n* is odd then the greatest value of ${}^{n}C_{r}$ is ${}^{n}C_{\frac{n+1}{2}}$ or ${}^{n}C_{\frac{n-1}{2}}$.

• If *n* is even then the greatest value of ${}^{n}C_{r}$ is ${}^{n}C_{n/2}$.

6. SELECTION FROM DISTINCT/IDENTICAL OBJECTS (I) SELECTION FROM DISTINCT OBJECTS

The number of ways (or combinations) of selection from *n* distinct objects, taken at least one of them is
*nC*₁ + *nC*₂ + *nC*₃ + + *nC*_n = 2ⁿ - 1

(II) SELECTION FROM IDENTICAL OBJECTS

The number of ways of selections of atleast one out of $a_1 + a_2 + a_3 + \dots + a_n + k$ objects, where a_1 are alike of one kind, $\dots a_n$ are alike of nth kind and k are distinct is

 $(a_1 + 1) (a_2 + 1) \dots (a_n + 1) 2^k - 1.$

8. **DIVISION OF DISTINCT OBJECT IN TO GROUPS** In the case of grouping we have the following. If m + n + p things are divided into 3 groups one containing *m*, the second *n* and the third *p* things; number of groupings is ${}^{(m+n+p)}C_m \cdot {}^{(n+p)}C_n \cdot {}^pC_p$

 $=\frac{(m+n+p)!}{m!\,n!\,p!}$ where *m*, *n*, *p* are distinct natural numbers.

In general, the number of ways in which *mn* different things can be divided equally into *m* distinct groups is $\frac{(mn)!}{(n!)^m}$ when order of groups is important.

***Saral**

∛Saral

9. DIVISION OF IDENTICAL OBJECTS INTO GROUPS

The number of ways of division or distribution of *n* identical things into *r* different groups is ${}^{n+r-1}C_{r-1}$ or ${}^{n-1}C_{r-1}$ according as empty groups are allowed or not allowed.

10. ARRANGEMENTS IN GROUPS

The number of ways of distribution and arrangement of n distinct things into r different groups is $n! {}^{n+r-1}C_{r-1}$ or $n! {}^{n-1}C_{r-1}$ according as empty groups are allowed or not allowed.