BINOMIALTHEOREM

BINOMIAL EXPRESSION

An expression containing two terms, is called a binomial.
For example $a+b / x, x+1 / y$,
$a-y^{2}$ etc. are binomial expressions. In general an expression containing more than two terms is called a multinomial.

STATEMENT OF BINOMIAL THEOREM

$(x+a)^{n}={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1} a+{ }^{n} C_{2} x^{n-2} a^{2}+\ldots .+{ }^{n} C_{n} a^{n}$ (where $\mathrm{n} \in \mathrm{N}$)
(i) ${ }^{\mathrm{n}} \mathrm{C}_{0},{ }^{\mathrm{n}} \mathrm{C}_{1}{ }^{\mathrm{n}} \mathrm{C}_{2}, \ldots,{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$ are called binomial coefficients, where ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n!}{r!(n-r)!}$
(ii) If ${ }^{n} C_{x}={ }^{n} C_{y}$, then either $x=y$ or $x+y=n$.
(iii) There are $(n+1)$ terms in the expansion of $(x+a)^{n}$.
(iv) The sum of powers of a and x in each term of
expansion is n.

(v) Greatest Binomial Coefficient

- If n is even : When $r=\frac{n}{2}$ i.e. ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n} / 2}$ takes the maximum value.
- If n is odd: $\mathrm{r}=\frac{n-1}{2}$ or $\frac{n+1}{2}$ i.e. ${ }^{n} C_{\frac{n-1}{2}}={ }^{n} C_{\frac{n+1}{2}}$ and take the maximum value.
(vi) General term of the expansion

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}}
$$

(vii) Middle term of the expansion

- If n is even $T_{\left(\frac{n}{2}+1\right)}$ is the middle term. So the middle term $T_{\left(\frac{n}{2}+1\right)}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n} / 2} \mathrm{X}^{\mathrm{n} / 2} \mathrm{y}^{\mathrm{n} / 2}$
- If n is odd $T_{\left(\frac{n+1}{2}\right)}$ and $T_{\left(\frac{n+3}{2}\right)}$ are middle terms. So the middle terms are $T_{\left(\frac{n+1}{2}\right)}={ }^{n} C_{\left(\frac{n-1}{2}\right)} x^{\frac{n+1}{2}} y^{\frac{n-1}{2}}$ and $T_{\left(\frac{n+3}{2}\right)}={ }^{n} \mathrm{C}_{\left(\frac{n+1}{2}\right)}$ $x^{\frac{n-1}{2}} y^{\frac{n+1}{2}}$
(viii) $\frac{T_{r+l}}{T_{r}}=\frac{(n-r+1)}{r} \cdot\left(\frac{a}{x}\right)$

SOME RELATIONS IN BINOMIAL COEFFICIENTS

$(x+a)^{n}={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1} a+{ }^{n} C_{2} x^{n-2} a^{2}+\ldots . .+{ }^{n} C_{n} a^{n}$

$$
\begin{equation*}
(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots \ldots+{ }^{n} C_{r} x^{r}+\ldots \ldots+{ }^{n} C_{n} x^{n} \tag{1}
\end{equation*}
$$

If $x=1$
$2^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{1}+\ldots \ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$ (Sum of binomial coefficients)
Here (1) and (2) are identities and will hold for all values of x and a (both real and complex). On differentiating and integrating these identities with respect to x , the relations obtained after differentiation or integration are also
identities and hold for all x. e.g. if we differentiating (2) we get
$\mathrm{n}(1+\mathrm{x})^{\mathrm{n}-1}={ }^{\mathrm{n}} \mathrm{C}_{1}+2^{\mathrm{n}} \mathrm{C}_{2} \mathrm{x}+\ldots . .+\mathrm{n}^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{X}^{\mathrm{n}-1}$
for $\mathrm{x}=1$ the above leads to
$\mathrm{n} .2^{\mathrm{n}-1}={ }^{\mathrm{n}} \mathrm{C}_{1}+2 .{ }^{\mathrm{n}} \mathrm{C}_{2}+\ldots .+\mathrm{n} .{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$
Now on integrating (2)
$\frac{(1+x)^{n+1}}{n+1}={ }^{\mathrm{n}} \mathrm{C}_{0} \cdot \mathrm{X}+{ }^{\mathrm{n}} \mathrm{C}_{1} \frac{x^{2}}{2}+{ }^{\mathrm{n}} \mathrm{C}_{2} \frac{x^{3}}{3}+\ldots \ldots .+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \frac{x^{n+1}}{n+1}+\mathrm{k}$
(k is a constant of integration)
If we put $\mathrm{x}=0$, we get $\mathrm{k}=\frac{1}{n+1}$
$\frac{(1+x)^{n+1}-1}{(n+1)}={ }^{\mathrm{n}} \mathbf{C}_{0} \mathbf{X}+{ }^{\mathrm{n}} \mathrm{C}_{1} \frac{x^{2}}{2}+{ }^{\mathrm{n}} \mathrm{C}_{2} \frac{x^{3}}{3}+\ldots . . .+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \frac{x^{n+1}}{n+1}$
Put $\mathrm{x}=1$
${ }^{n} C_{0}+\frac{{ }^{n} C_{1}}{2}+\frac{{ }^{n} C_{2}}{3}+\ldots . .+\frac{{ }^{n} C_{n}}{n+1}=\frac{2^{n+1}-1}{(n+1)}$

NUMERICALLY GREATEST TERM OF BINOMIAL EXPANSION

$$
\begin{aligned}
& (\mathrm{a}+\mathrm{x})^{\mathrm{n}}=\mathrm{C}_{0} \mathrm{a}^{\mathrm{n}}+\mathrm{C}_{1} \mathrm{a}^{\mathrm{n}-1} \mathrm{X}+\ldots .+\mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} . \\
& \left.\left|\frac{T_{r+1}}{T_{r}}\right|\left|\frac{{ }^{n} \mathrm{C}_{r}}{{ }^{n} C_{r-1}}\right| \frac{\mid x}{a}\left|\quad=\left|\frac{n-r+1}{r}\right|\right| \frac{\mid x}{\mathrm{a}} \right\rvert\, \\
& \text { Take }\left|\frac{n-r+1}{r}\right|\left|\frac{\mathrm{x}}{\mathrm{a}}\right| \geq 1 \\
& \mathrm{r} \leq \frac{n+1}{1+\left|\frac{a}{x}\right|} \quad\left\{\mathrm{As}\left|\mathrm{~T}_{\mathrm{r}+1}\right| \geq\left|\mathrm{T}_{\mathrm{r}}\right|\right\}
\end{aligned}
$$

So the greatest term will be $\mathrm{T}_{\mathrm{r}+1}$ where $\mathrm{r}=\left[\frac{n+1}{1+\left|\frac{a}{x}\right|}\right]$
[.] denotes the greatest integer function.
Note: If $\frac{n+1}{1+\left|\frac{a}{x}\right|}$ itself is a natural number, then $\mathrm{T}_{\mathrm{r}}=\mathrm{T}_{\mathrm{r}+1}$ and both of them are the numerically greatest terms.

BINOMIAL THEOREM FOR ANY INDEX

$(1+x)^{n}=1+n x+n(n-1) \frac{x^{2}}{2!}+\ldots+\frac{n(n-1)(n-2) \ldots(n-r+1)}{r!} \cdot x^{r}$ $+\ldots+$ terms up to ∞.
$w h e r e ~ ' ~ n$ ' may be negative integer or positive or negative fraction.

- expansion is valid only when $|x|<1$ or $-1<x<1$
- As the series never terminate, the number of terms in series is infinite
- ${ }^{n} C_{r}$ can not be used because it is defined only for natural number.
- General term of the series $(1+x)^{-n}=\mathrm{T}_{r+1}=(-1)^{r}$ $\frac{n(n+1)(n+2) \ldots(n+r-1)}{r!} \cdot x^{r}$
- General term of series $(1-x)^{-n}$ $\mathrm{T}_{r+1}=\frac{n(n+1)(n+2) \ldots(n+r-1)}{r!} \cdot x^{r}$

Other important expansion

- $(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots+(-1)^{r} . x^{r}+\ldots$
- $(1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots+x^{r}+\ldots$

