<mark>∛</mark>Saral

Å

INTEGRAL CALCULUS

Constant of Integration:

$$\begin{split} &\frac{d}{dx}(F(x)) = f(x) \Rightarrow \frac{d}{dx}[F(x) + c] = f(x).\\ &\text{Therefore, } \int f(x) \ dx = F(x) + c.\\ &\text{Properties of Indefinite Integration:}\\ &(i) \ \int af(x)dx = a \int f(x)dx.\\ &(ii) \ \int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx.\\ &(iii) \ If \ \int f(u)du = F(u) + c, \qquad \text{then } \int f(ax + b) \ dx = \frac{1}{a}F(ax + b) + c, \ a \neq 0. \end{split}$$

Integration as the Inverse Process of Differentiation

Basic formulae:

Antiderivatives or integrals of some of the widely used functions (integrands) are given below.

•	$\frac{d}{dx}\left(\frac{x^{n+1}}{n+1}\right) = x^n$	$\Rightarrow \int x^n dx = \frac{x^{n+1}}{n+1} + c, n \neq -1$
•	$\frac{d}{dx}(\ln x) = \frac{1}{x}$	$\Rightarrow \int \frac{1}{x} dx = \ln x + c$
•	$\frac{d}{dx}(e^{x}) = e^{x}$	$\Rightarrow \int e^x dx = e^x + c$
•	$\frac{d}{dx}(a^x) = (a^x \ln a)$	$\Rightarrow \int a^x dx = \frac{a^x}{\ln a} + c \qquad (a > 0)$
•	$\frac{d}{dx}(\sin x) = \cos x$	$\Rightarrow \int \cos x dx = \sin x + c$
•	$\frac{d}{dx}(\cos x) = -\sin x$	$\Rightarrow \int \sin x dx = -\cos x + c$
•	$\frac{d}{dx}(\tan x) = \sec^2 x$	$\Rightarrow \int \sec^2 x dx = \tan x + c$

JEE Main Maths Revision Notes

www.esaral.com

&Saral

$$\frac{d}{dx}(\csc x) = (-\cot x \csc x) \qquad \Rightarrow \qquad \int \csc x \cot x \, dx = -\cos \sec x + c$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \Rightarrow \qquad \int \sec x \tan x \, dx = \sec x + c$$

$$\frac{d}{dx}(\cot x) = -\csc e^{2}x \qquad \Rightarrow \qquad \int \csc e^{2}x \, dx = -\cot x + c$$

$$\frac{d}{dx}(\sin^{-1}\frac{x}{a}) = \frac{1}{\sqrt{a^{2} - x^{2}}} \qquad \Rightarrow \qquad \int \frac{1}{\sqrt{a^{2} - x^{2}}} \, dx = \sin^{-1}\left(\frac{x}{a}\right) + c$$

$$\frac{d}{dx}(\tan^{-1}\frac{x}{a}) = \frac{a}{x^{2} + a^{2}} \qquad \Rightarrow \qquad \int \frac{dx}{x^{2} + a^{2}} = \frac{1}{a}\tan^{-1}\frac{x}{a} + c$$

$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^{2} - 1}} \qquad \Rightarrow \qquad \int \frac{1}{|x|\sqrt{x^{2} - 1}} \, dx = \sec^{-1}(x) + c$$

$$\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx = \ln|\sin x| + c$$

$$\int \tan x \, dx = -\int \frac{-\sin x}{\cos x} \, dx = -\ln|\cos x| + c \quad or \quad \ln|\sec x| + c$$

•
$$\int \sec x \, dx = \int \frac{\sec x(\sec x + \tan x)}{\sec x + \tan x} \, dx = \ln |\sec x + \tan x| + c \text{ or } \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + c$$

•
$$\int \csc x \, dx = \int \frac{\csc x(\cot x - \csc ex)}{\cot x - \csc ex} \, dx = \ln \left| (\cot x - \csc ex) \right| + c \text{ or } \ln \left| \tan \frac{x}{2} \right| + c$$

Standard Formulae:

- $\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left| x + \sqrt{x^2 + a^2} \right| + c$ $\int \frac{dx}{\sqrt{x^2 a^2}} = \ln \left| x + \sqrt{x^2 a^2} \right| + c$ $\int \frac{dx}{\sqrt{x^2 a^2}} = \frac{1}{2a} \ln \left| \frac{x a}{x + a} \right| + c$ $\int \frac{dx}{a^2 x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a x} \right| + c$ $\int \sqrt{u^2 + a^2} du = \frac{u}{2} \sqrt{u^2 + a^2} + \frac{a^2}{2} \ln \left| u + \sqrt{u^2 + a^2} \right| + c$ $\int \sqrt{u^2 a^2} du = \frac{u}{2} \sqrt{u^2 a^2} \frac{a^2}{2} \ln \left| u + \sqrt{u^2 a^2} \right| + c$
- $\int \sqrt{a^2 x^2} \, dx = \frac{x}{2} \sqrt{a^2 x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + c$

∛Saral

Integration by Substitution:

There are following types of substitutions.

Direct Substitution:

If integral is of the form $\int f(g(x)) g'(x) dx$, then put g(x) = t, provided $\int f(t) dt$ exists.

Standard Substitutions:

- For terms of the form $x^2 + a^2$ or $\sqrt{x^2 + a^2}$, put $x = a \tan \theta$ or a $\cot \theta$
- For terms of the form $x^2 a^2$ or $\sqrt{x^2 a^2}$, put $x = a \sec \theta$ or a $\csc \theta$
- For terms of the form $a^2 x^2$ or $\sqrt{a^2 x^2}$, put $x = a \sin \theta$ or $a \cos \theta$
- If both $\sqrt{a+x}$, $\sqrt{a-x}$ are present, then put $x = a \cos\theta$.
- For the type $\sqrt{(x-a)(b-x)}$, put $x = a \cos^2 \theta + b \sin^2 \theta$
- For the type $(\sqrt{x^2 + a^2} \pm x)^n$ or $(x \pm \sqrt{x^2 a^2})^n$, put the expression within the bracket = t.
- For the type $(x+a)^{-1-\frac{1}{n}}(x+b)^{-1+\frac{1}{n}}$ or $(\frac{x+b}{x+a})^{\frac{1}{n}-1}\frac{1}{(x+a)^2}$ $(n \in \mathbb{N}, n > 1)$, put $\frac{x+b}{x+a} = t$.
- For $\frac{1}{(x+a)^{n_1}(x+b)^{n_2}}$, $n_1, n_2 \in N$ (and > 1), again put (x+a) = t (x + b)

<mark>∛</mark>Saral

Ą

Integration by Parts:

If u and v be two functions of x, then integral of product of these two functions is given by: $\int uv \, dx = u \int v \, dx - \int \left[\frac{du}{dx} \int v \, dx\right] dx$

(Inverse, Logarithmic, Algebraic, Trigonometric, Exponential)

In the above stated order, the function on the left is always chosen as the first function. This rule is called as **ILATE** e.g. In the integration of $\int x \sin x dx$, x is taken as the first function and sinx is taken as the second function.

An important result: In the integral $\int g(x)e^{x}dx$, if g(x) can be

expressed as g(x) = f(x) + f'(x) then $\int e^{x} [f(x) + f'(x)] dx = e^{x} f(x) + c$

Integration By Partial Fractions:

A function of the form P(x)/Q(x), where P(x) and Q(x) are polynomials, is called a rational function. Consider the rational function $\frac{x+7}{(2x-3)(3x+4)} = \frac{1}{2x-3} \cdot \frac{1}{3x+4}$ $Q(x) = (x - a)^{k...} (x^2 + \alpha x + \beta)^r$... where binomials are different, and then set $\frac{P(x)}{Q(x)} = \frac{A_1}{(x-a)} + \frac{A_2}{(x-a)^2} + ... + \frac{A_k}{(x-a)^k} + \frac{M_1x + N_1}{x^2 + \alpha x + \beta} + \frac{M_2x + N_2}{(x^2 + \alpha x + \beta)^2} + ... + \frac{M_rx + N_r}{(x^2 + \alpha x + \beta)^r} + ...$ **Algorithm to express the infinite series as definite integral:** (i) Express the given series in the form of $\sum_{n=1}^{1} \frac{1}{n} f\left(\frac{r}{n}\right)$ (ii) The limit when $n \to \infty$ is its sum $\lim_{h\to 0} \sum_{n=1}^{n-1} \frac{1}{n} \cdot f\left(\frac{r}{n}\right)$

Å

Replace r/n by x, 1/n by dx and $\lim_{n\to\infty} \sum$ by the sign of integration

(iii) The lower and upper limits of integration will be the value of r/n for the first and last term (or the limits of these values respectively).

Some particular cases of the above are

(a) $\lim_{n\to\infty}\sum_{r=1}^{n}\frac{1}{n}f\left(\frac{r}{n}\right) \text{ or } \lim_{n\to\infty}\sum_{r=0}^{n-1}\frac{1}{n}f\left(\frac{r}{n}\right) = \int_{0}^{1}f(x)dx,$ (b) $\lim_{n\to\infty}\sum_{r=1}^{pn}\frac{1}{n}f\left(\frac{r}{n}\right) = \int_{\alpha}^{\beta}f(x)dx,$ Where $\alpha = \lim_{n\to\infty}\frac{r}{n} = 0$ (as r = 1) and $\beta = \lim_{n\to\infty}\frac{r}{n} = p$ (as r = pn). $\int_{a}^{b}f(x)dx = F(b) - F(a) \text{ (also called the Newton-Leibnitz formula).}$

The function F(x) is the integral of f(x) and a and b are the lower and the upper limits of integration.

Proof: From the first fundamental theorem

$$\frac{d}{dx} \left[\int_{a}^{x} f(t)dt - F(x) \right] = f(x) - F'(x) = 0 \quad \text{as} \quad F'(x) = f(x) \quad \text{is given}$$

i.e., the expression within the bracket must be constant in the interval and hence we can write

$$F(x) = \int_{a}^{x} f(t)dt + c \ \forall x \in [a,b] \ , \text{ where } c \text{ is some real constant.}$$

Thus,
$$F(b) = \int_{a}^{b} f(t) dt + c \quad \text{ and } F(a) = \int_{a}^{a} f(t)dt + c = 0 + c = c \text{ .}$$

Hence,
$$\int_{a}^{b} f(t)dt = F(b) - F(a) \text{ .}$$

Ą

CHANGE OF VARIABLES IN DEFINITE INTEGRATION

If the functions f(x) is continuous on [a, b] and the function x = g(t) is continuously differentiable on the interval [t₁, t₂] and $a = g(t_1)$ and $b = g(t_2)$, then

 $\int_{a}^{b} f(x) dx = \int_{t_{1}}^{t_{2}} f(g(t)) g'(t) dt.$

PROPERTIES OF DEFINITE INTEGRAL

- 1. Change of variable of integration is immaterial so long as limits of integration remain the same i.e. $\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt$
- 2. $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$ 3. $\int_{a}^{b} f(x)dx = \int_{b}^{c} f(x)dx + \int_{a}^{b} f(x)dx$

Where, the point c may lie between a and b or it may be exterior to (a, b).

4.
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$

- 5. $\int_{0}^{a} f(x) dx = \int_{0}^{a/2} [f(x) + f(a x)] dx$
- 6. $\int_{-a}^{a} f(x)dx = \int_{0}^{a} [f(x) + f(-x)]dx$

<mark>∛</mark>Saral

Å

7.
$$\int_{a}^{b} f(x)dx = (b-a)\int_{0}^{1} f((b-a)x + a)dx$$

8. If f(x) is a periodic function with period T, then

(a)
$$\int_{a}^{a+nT} f(x)dx = n\int_{0}^{T} f(x)dx, \text{ where } n \in I$$

(b)
$$\int_{mT}^{nT} f(x)dx = (n-m)\int_{0}^{T} f(x)dx, \text{ where } n, m \in I$$

(c)
$$\int_{a+nT}^{b+nT} f(x)dx = \int_{a}^{b} f(x)dx, \text{ where } n \in I$$

Differentiation under the Integral Sign

Leibnitz's Rule:

If g is continuous on [a, b] and $f_1(x)$ and $f_2(x)$ are differentiable functions whose values lie in [a, b], then

T

 $\frac{d}{dx}\int\limits_{f_1(x)}^{f_2(x)}g(t)dt=g(f_2(x))f_2(x)-g(f_1(x))f_1(x)$

JEE Main Maths Revision Notes