COMPLEX NUMBERS AND QUADRATIC EQUATIONS

A complex number, represented by an expression of the form $a+i b$ (a, b are real),
If $z=a+i b$, then real part of $z=\operatorname{Re}(z)=a$ and Imaginary part of $z=\operatorname{Im}(z)=$ b.
\checkmark If $\operatorname{Re}(z)=0$, the complex number is purely imaginary.
$\checkmark \operatorname{If} \operatorname{Im}(z)=0$, the complex number is real.
POLAR REPRESENTATION
Let $O P=r$, then $x=r \cos \theta$, and $y=r \sin \theta$
$\Rightarrow z=x+i y=r \cos \theta+i r \sin \theta,=r(\cos \theta+i \sin \theta)$. This is known as Trigonometric (or Polar) form of a complex Number. Here we should take the principal value of θ.
For general values of the argument $z=r[\cos (2 n \pi+\theta)+i \sin (2 n \pi+\theta)] \quad$ (where n is an integer)

PROPERTIES OF CONJUGATE

- $(\bar{z})=z$
- $\quad z=\bar{z} \Leftrightarrow z$ is real
- $\quad z=-\bar{z} \Leftrightarrow z$ is purely imaginary
- $\quad \operatorname{Re}(z)=\operatorname{Re}(\bar{z})=\frac{z+\bar{z}}{2}$
- $\quad \operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
- $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$
- $\overline{z_{1}-z_{2}}=\overline{z_{1}}-\overline{z_{2}}$
- $\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\overline{z_{1}}}{\overline{z_{2}}}\left(z_{2} \neq 0\right)$

PROPERTIES OF MODULUS

- $\quad|z| \geq 0 \Rightarrow|z|=0$ iff $z=0$ and $|z|>0$ iff $z \neq 0$.
- $\quad-|z| \leq \operatorname{Re}(z) \leq|z|$ and $-|z| \leq|z|$.
- $\quad|z|=|\bar{z}|=|-z|=|-\bar{z}|$
- $\quad z \bar{z}=|z|^{2}$
- $\quad\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$

In general $\mid z_{1} z_{2} z_{3}$ $z_{n}\left|=\left|z_{1}\right|\right| z_{2}| | z_{3}\left|\ldots . .\left|z_{n}\right|\right.$

- $\quad\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \quad\left(z_{2} \neq 0\right)$
- $\quad\left|z_{1} \pm z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$

ARGUMENT OF A COMPLEX NUMBERS

- $\mathrm{Z}=1+i=(1,1)$ and is marked by point $K(1,1)$ lies in first quadrant.
$\therefore|Z|=\sqrt{2}$ and $\arg Z=\pi / 4$.
- If $Z=1-i=(1,-1)$, then K lies in the fourth quadrant and $|Z|=\sqrt{2}$ and $\arg Z$ $=-\pi / 4$.
- If $Z=-1+i=(-1,1)$, then K lies in the second quadrant $\operatorname{and} \arg Z=\frac{3 \pi}{4}$.
- If $\mathrm{Z}=-1-i, \arg \mathrm{Z}=-\frac{3 \pi}{4}$.

PROPERTIES OF ARGUMENTS

- $\quad \operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)+2 \mathrm{k} \pi(k=0$ or 1 or -1$)$

In general $\operatorname{Arg}\left(z_{1} z_{2} z_{3} \ldots \ldots z_{n}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)+\operatorname{Arg}\left(z_{3}\right)+\ldots \ldots+\operatorname{Arg}$ $\left(z_{n}\right)+2 k \pi$
(where $k \in \boldsymbol{I}$)

- $\quad \operatorname{Arg}\left(\frac{z_{1}}{z_{2}}\right)=\operatorname{Arg} z_{1}-\operatorname{Arg} z_{2}+2 \mathrm{k} \pi \quad(k=0$ or 1 or -1$)$
- $\operatorname{Arg}\left(\frac{z}{\bar{z}}\right)=2 \operatorname{Arg} z+2 \mathrm{k} \pi \quad(k=0$ or 1 or -1$)$
- $\quad \operatorname{Arg}\left(z^{n}\right)=n \operatorname{Arg} z+2 k \pi \quad(k=0$ or 1 or -1$)$
- If $\operatorname{Arg}\left(\frac{z_{2}}{z_{1}}\right)=\theta$, then $\operatorname{Arg}\left(\frac{z_{1}}{z_{2}}\right)=2 k \pi-\theta$ where $k \in \boldsymbol{I}$.
- $\quad \operatorname{Arg} \bar{z}=-\operatorname{Arg} z$
- If $\arg (z)=0 \Rightarrow z$ is real.

De MOIVRE'S THEOREM

For any rational number n, the value or one of the values of $(\cos \theta+\sin \theta)^{n}$ is $(\cos n \theta+\sin n \theta)$. The following may also be noted:
(a) $(\cos \theta+i \sin \theta)^{-n}=(\cos n \theta-\sin n \theta)=(\cos \theta-i \sin \theta)^{n}$
(b) $(\cos \theta+i \sin \theta)^{n}=(\cos n \theta+\sin n \theta)=(\cos \theta-i \sin \theta)^{-n}$

CUBE ROOTS OF UNITY

Consider the cubic ($3^{\text {rd }}$ degree) equation

$$
x^{3}=1=\cos 0+i \sin 0=\cos 2 k \pi+i \sin 2 k \pi
$$

$$
\therefore x=\sqrt[3]{1}=(\cos 2 k \pi+i \sin 2 k \pi)^{1 / 3}=\cos \left(\frac{2 k \pi}{3}\right)+i \sin \left(\frac{2 k \pi}{3}\right)
$$

QUADRATIC EQUATIONS

An equation of the form $a x^{2}+b x+c=0(\mathrm{a} \neq 0), a, b, c$ are real numbers, is called a quadratic equation.
The quantity $D=b^{2}-4 a c$ is called the discriminant of quadratic equation

$$
\begin{equation*}
a x^{2}+b x+c=0 \quad(a \neq 0) \tag{1}
\end{equation*}
$$

The roots of the quadratic equation, generally denoted by α and β are

$$
\alpha=\frac{-b+\sqrt{D}}{2 a} \text { and } \beta=\frac{-b-\sqrt{D}}{2 a} \text {. }
$$

NATURE OF THE ROOTS

1. Suppose $a, b, c \in R$ and $a \neq 0$. Then the following hold good:
(a) The equation (1) has real and distinct roots if and only if $D>0$.
(b) The equation (1) has real and equal roots if and only if $D=0$.
(c) The equation (1) has complex roots with non-zero imaginary parts if and only if $D<0$.

RELATION BETWEEN ROOTS AND COEFFICIENTS AND SYMMETRIC FUNCTIONS OF ROOTS

Let α and β be the roots of the equation $a x^{2}+b x+c=0$ then $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$
(a) if both roots are positive, then $\alpha+\beta=\frac{-b}{a}>0$ and $\alpha \beta=\frac{c}{a}>0$
(b) if both roots are negative, then $\alpha+\beta=\frac{-b}{a}<0$ and $\alpha \beta=\frac{c}{a}>0$

GRAPH OF QUADRATIC EXPRESSION

$$
\text { Let } f(x)=a x^{2}+b x+c \quad(a \neq 0, a, b, c \in \boldsymbol{R})
$$

It can be written as
$y=f(x)=a\left[\left(x+\frac{b}{2 a}\right)^{2}-\frac{D}{4 a^{2}}\right]$
$\Rightarrow \quad\left(y+\frac{D}{4 a}\right)=a\left(x+\frac{b}{2 a}\right)^{2}$ where, D is the discriminant.
This equation is of the form $(x-\alpha)^{2}=4 k(y-\beta)$ which represents a parabola with vertex at (α, β)
i.e., $\quad\left(\frac{-b}{2 a,}, \frac{-D}{4 a}\right)$ in this case.

If $a>0$, the parabola is concave upwards and if $a<0$ the parabola is concave downwards.

QUADRATIC INEQUATIONS

The inequation of type $a x^{2}+b x+c \geq 0$ or $a x^{2}+b x+c \leq 0$ etc, $(a \neq 0) a, b, c \in \boldsymbol{R}$ are known as quadratic inequations.

SOME RESULTS ON ROOTS OF A POLYNOMIAL EQUATION

(i) Factor theorem: If α is a root of the equation $f(x)=0$, then $f(x)$ is exactly divisible by $(x-\alpha)$ and conversely, if $f(x)$ is exactly divisible by $(x-\alpha)$ then α is a root of the equation $f(x)=0$ and the remainder obtained is $f(\alpha)$, which is zero.
(ii) Every equation of an odd degree has at least one real root.
(iii) If $x=\alpha$ is root repeated m times in $f(x)=0,(f(x)=0$ is an nth degree equation in x)
then $f(x)=(x-\alpha)^{m} g(x)$, where $g(x)$ is of degree $(n-m)$.

Rolle's Theorem:

This theorem is applicable to polynomials. It says that if $f(x)$ is a polynomial in the interval $[a, b]$ and $f(a)=f(b)$, then there is at least one point between a and b where $f^{\prime}(x)=0$.

