∛Saral

Å

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

A complex number, represented by an expression of the form a + ib (a, b are real),

If z = a + ib, then real part of z = Re(z) = a and Imaginary part of z = Im(z) = a

b.

- ✓ If Re (*z*) = 0, the complex number is purely imaginary.
- ✓ If Im (*z*) = 0, the complex number is real.

POLAR REPRESENTATION

Let OP = r, then $x = r \cos\theta$, and $y = r \sin\theta$

 $\Rightarrow z = x + iy = r \cos\theta + ir \sin\theta, = r(\cos\theta + i \sin\theta).$ This is known as Trigonometric (or Polar) form of a complex Number. Here we should take the principal value of θ .

For general values of the argument

 $z = r[\cos (2n\pi + \theta) + i \sin(2n\pi + \theta)] \quad \text{(where } n \text{ is an integer)}$

PROPERTIES OF CONJUGATE

• $(\overline{z}) = z$

- $z = \overline{z} \Leftrightarrow z$ is real
- $z = -\bar{z} \Leftrightarrow z$ is purely imaginary

•
$$\operatorname{Re}(z) = \operatorname{Re}(\overline{z}) = \frac{z + \overline{z}}{2}$$

• Im
$$(z) = \frac{z-\overline{z}}{2i}$$

•
$$Z_1 + Z_2 = Z_1 + Z_2$$

•
$$\overline{Z_1 - Z_2} = \overline{Z_1} - \overline{Z_2}$$

•
$$\left(\frac{Z_1}{Z_2}\right) = \frac{Z_1}{Z_2} \quad (Z_2 \neq 0)$$

PROPERTIES OF MODULUS

JEE Main Maths Revision Notes

∛Saral

Å

- $|z| \ge 0 \implies |z| = 0$ iff z = 0 and |z| > 0 iff $z \ne 0$.
- $-|z| \le \operatorname{Re}(z) \le |z|$ and $-|z| \le |z|$.
- $|z| = |\bar{z}| = |-z| = |-\bar{z}|$
- $z\bar{z} = |z|^2$
- $|z_1z_2| = |z_1| |z_2|$ In general $|z_1z_2z_3 \dots z_n| = |z_1| |z_2| |z_3| \dots |z_n|$

•
$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$$
 $(z_2 \neq 0)$

• $|z_1 \pm z_2| \le |z_1| + |z_2|$

ARGUMENT OF A COMPLEX NUMBERS

- Z = 1 + i = (1, 1) and is marked by point K(1, 1) lies in first quadrant. $\therefore |Z| = \sqrt{2}$ and arg $Z = \pi/4$.
- If Z = 1 i = (1, -1), then K lies in the fourth quadrant and $|Z| = \sqrt{2}$ and arg $Z = -\pi/4$.
- If Z = -1 + i = (-1, 1), then K lies in the second quadrant and $\arg Z = \frac{3\pi}{4}$.
- If Z = -1 i, arg $Z = -\frac{3\pi}{4}$.

PROPERTIES OF ARGUMENTS

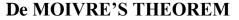
- Arg $(z_1z_2) = \operatorname{Arg} (z_1) + \operatorname{Arg} (z_2) + 2k\pi (k = 0 \text{ or } 1 \text{ or } 1)$ In general Arg $(z_1z_2z_3 \dots z_n) = \operatorname{Arg} (z_1) + \operatorname{Arg} (z_2) + \operatorname{Arg} (z_3) + \dots + \operatorname{Arg} (z_n) + 2k\pi$ (where $k \in I$)
- Arg $\left(\frac{z_1}{z_2}\right) = \operatorname{Arg} z_1 \operatorname{Arg} z_2 + 2k\pi$ (k = 0 or 1 or -1)
- Arg $\left(\frac{z}{\bar{z}}\right) = 2$ Arg $z + 2k\pi$ (k = 0 or 1 or -1)
- Arg $(z^n) = n$ Arg $z + 2k\pi$ (k = 0 or 1 or -1)
- If Arg $\left(\frac{z_2}{z_1}\right) = \theta$, then Arg $\left(\frac{z_1}{z_2}\right) = 2k\pi \theta$ where $k \in I$.
- Arg $\bar{z} = -\operatorname{Arg} z$
- If $\arg(z) = 0 \implies z$ is real.

JEE Main Maths Revision Notes

www.esaral.com

<mark>∛S</mark>aral

Å



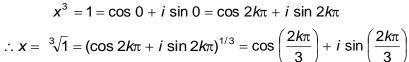
For any rational number *n*, the value or one of the values of $(\cos \theta + \sin \theta)^n$ is $(\cos n\theta + \sin n\theta)$. The following may also be noted:

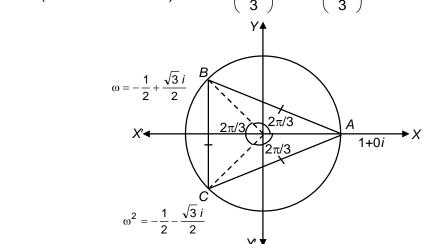
(a) $(\cos \theta + i \sin \theta)^{-n} = (\cos n\theta - \sin n\theta) = (\cos \theta - i \sin \theta)^n$

(b) $(\cos \theta + i \sin \theta)^n = (\cos n\theta + \sin n\theta) = (\cos \theta - i \sin \theta)^{-n}$

CUBE ROOTS OF UNITY

Consider the cubic (3rd degree) equation





QUADRATIC EQUATIONS

An equation of the form $ax^2 + bx + c = 0$ (a $\neq 0$), a, b, c are real numbers, is called a quadratic equation.

The quantity $D = b^2 - 4ac$ is called the discriminant of quadratic equation $ax^2 + bx + c = 0$ (a $\neq 0$). ...(1)

The roots of the quadratic equation, generally denoted by α and β are

$$\alpha = \frac{-b + \sqrt{D}}{2a}$$
 and $\beta = \frac{-b - \sqrt{D}}{2a}$

JEE Main Maths Revision Notes

Å

NATURE OF THE ROOTS

- 1. Suppose *a*, *b*, $c \in R$ and $a \neq 0$. Then the following hold good:
 - (a) The equation (1) has real and distinct roots if and only if D > 0.
 - (b) The equation (1) has real and equal roots if and only if D = 0.

(c) The equation (1) has complex roots with non-zero imaginary parts if and only if D < 0.

RELATION BETWEEN ROOTS AND COEFFICIENTS AND SYMMETRIC FUNCTIONS OF ROOTS

Let α and β be the roots of the equation $ax^2 + bx + c = 0$ then $\alpha + \beta = -\frac{b}{2}$ and

$$\alpha\beta=\frac{\mathsf{c}}{\mathsf{a}}$$

(a) if both roots are positive, then $\alpha + \beta = \frac{-b}{a} > 0$ and $\alpha\beta = \frac{c}{a} > 0$

(b) if both roots are negative, then $\alpha + \beta = \frac{-b}{a} < 0$ and $\alpha\beta = \frac{c}{a} > 0$

GRAPH OF QUADRATIC EXPRESSION

Let $f(x) = ax^2 + bx + c$ $(a \neq 0, a, b, c \in \mathbb{R})$ It can be written as $y = f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{D}{4a^2} \right]$ $\Rightarrow \qquad \left(y + \frac{D}{4a} \right) = a \left(x + \frac{b}{2a} \right)^2$ where, *D* is the discriminant.

This equation is of the form

 $(x-\alpha)^2 = 4k (y-\beta)$ which represents a parabola with vertex at (α, β) i.e., $\left(\frac{-b}{2a}, \frac{-D}{4a}\right)$ in this case.

If a > 0, the parabola is concave upwards and if a < 0 the parabola is concave downwards.

QUADRATIC INEQUATIONS

The inequation of type $ax^2 + bx + c \ge 0$ or $ax^2 + bx + c \le 0$ etc, $(a \ne 0) a, b, c \in \mathbf{R}$ are known as quadratic inequations.

<mark>∛</mark>Saral

Å

SOME RESULTS ON ROOTS OF A POLYNOMIAL EQUATION

- (i) Factor theorem: If α is a root of the equation f(x) = 0, then f(x) is exactly divisible by $(x-\alpha)$ and conversely, if f(x) is exactly divisible by $(x-\alpha)$ then α is a root of the equation f(x) = 0 and the remainder obtained is $f(\alpha)$, which is zero.
- (ii) Every equation of an odd degree has at least one real root.
- (iii) If $x = \alpha$ is root repeated *m* times in f(x) = 0, (f(x) = 0 is an nth degree equation in *x*)

then $f(x) = (x-\alpha)^m g(x)$, where g(x) is of degree (n-m).

Rolle's Theorem:

This theorem is applicable to polynomials. It says that if f(x) is a polynomial in the interval [a, b] and f(a) = f(b), then there is at least one point between a and b where f'(x) = 0.