A

<mark>∛S</mark>aral

THREE DIMENSIONAL GEOMETRY

DISTANCE FORMULA

The distance between two points *P* and *Q* having coordinates (*x*₁, *y*₁, *z*₁) and (*x*₂, *y*₂, *z*₂) is given by $PQ = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$

SECTION FORMULA

The coordinates of the point *R* which divides the line joining two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ in the ratio m : n are given by $\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}, \frac{mz_2 + nz_1}{m+n}$

The division may be internal or external

DIRECTION COSINES

If the position vector of a point *P* i.e., \overrightarrow{OP} makes angles α , β and γ with the positive direction of *x*, *y* and *z* axis respectively, then $\cos\alpha$, $\cos\beta$ and $\cos\gamma$ are called its direction cosines. They are also denoted by *l*, *m* and *n* respectively.

i.e., $l = \cos \alpha$, $m = \cos \beta$, $n = \cos \gamma$.

<mark>∛</mark>Saral

Å

DIRECTION RATIOS

If *a*, *b*, *c* three numbers such that $\frac{a}{l} = \frac{b}{m} = \frac{c}{n}$

where *l*, *m*, *n* are direction cosines of a vector \vec{r} , then *a*, *b*, *c* are known as direction numbers or direction ratios of \vec{r} .

Two vectors having direction ratios a_1 , b_1 , c_1 and a_2 , b_2 , c_2 are narallel if $\frac{a_1}{a_1} - \frac{b_1}{a_2} - \frac{c_1}{a_1}$

parallel if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$.

They are perpendicular if $a_1a_2 + b_1b_2 + c_1c_2 = 0$.

VECTOR EQUATION OF A LINE PASSING THROUGH A GIVEN POINT AND PARALLEL TO A GIVEN VECTOR

Let *A* be a fixed point having position vector \vec{a} and the line is parallel to the vector $\vec{b} \cdot P$ is an arbitrary point having position vector \vec{r} on the line. From $\triangle OAP$, $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$

 $\implies \vec{r} = \vec{a} + \lambda \vec{b}$

This is the required equation of line. λ is an arbitrary real number.

<mark>∛S</mark>aral

CARTESIAN EQUATION OF A LINE PASSING THROUGH A GIVEN POINT AND GIVEN DIRECTION RATIOS

Let *A* (x_1 , y_2 , z_3) be the fixed point and the line has direction ratios p_1 , p_2 , p_3 .

 $\frac{x - x_1}{p_1} = \frac{y - y_2}{p_2} = \frac{z - z_3}{p_3} = \lambda$

This is the Cartesian equation of the line also called symmetrical form of line.

Any point on this line can be taken as

 $(x_1 + p_1\lambda, x_2 + p_2\lambda, x_3 + p_3\lambda).$

VECTOR EQUATION OF A LINE PASSING THROUGH TWO GIVEN POINTS

Let *A* and *B* be two fixed points having position vectors \vec{a} and \vec{b} . *P* is a variable point on the line.

From $\triangle OPA$ again, $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$

 \Rightarrow $\overrightarrow{OP} = \overrightarrow{OA} + \lambda (\overrightarrow{AB})$

$$\implies$$
 $\vec{r} = \vec{a} + \lambda (\vec{b} - \vec{a})$

This is the required equation.

CARTESIAN EQUATION OF A LINE PASSING THROUGH TWO GIVEN POINTS

JEE Main Maths Revision Notes

www.esaral.com

∛Saral

If coordinates of *A* and *B* are (x_1, y_1, z_1) and (x_2, y_2, z_2) , the Cartesian equation is given by

 $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$

ANGLE BETWEEN TWO LINES

If two lines are parallel to vectors \vec{b}_1 and \vec{b}_2 , the angle between them is given by

$$\cos \theta = \frac{\vec{b}_1 \cdot \vec{b}_2}{|\vec{b}_1| |\vec{b}_2|}$$

SHORTEST DISTANCE BETWEEN TWO LINES

If $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \lambda \vec{b}_2$ are two skew lines, the shortest distance between them is the perpendicular distance.

$$d = \left| \frac{(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2)}{|\vec{b}_1 \times \vec{b}_2|} \right| = \left| \frac{[\vec{b}_1 \ \vec{b}_2 \ (\vec{a}_2 - \vec{a}_1)]}{|\vec{b}_1 \times \vec{b}_2|} \right|$$

Clearly two lines intersect if $[\vec{b}_1 \vec{b}_2 (\vec{a}_2 - \vec{a}_1)] = 0$

If the lines are parallel,

i.e.,
$$\vec{r} = \vec{a}_1 + \lambda \vec{b}$$

and $\vec{r} = \vec{a}_2 + \lambda \vec{b}$

the formula to calculate shortest

distance becomes

$$d = \frac{|(\vec{a}_2 - \vec{a}_1) \times \vec{b}|}{|\vec{b}|}$$

PERPENDICULAR DISTANCE OF A POINT FROM A LINE

Å

∛Saral

The perpendicular distance d can be obtained using vector form as well as Cartesian form of the line.

Let the line be $\vec{r} = \vec{a} + \lambda \vec{b}$ and p

be the point

$$\Longrightarrow d = \left| \frac{(\vec{p} - \vec{a}) \times \vec{b}}{|\vec{b}|} \right|$$

EQUATION OF A PLANE PASSING THROUGH THREE GIVEN POINTS

If three non-collinear points are given, there is a unique plane passing through them. Let the points be *A*, *B* and *C* having position vectors \vec{a}, \vec{b} and \vec{c} . Then \overrightarrow{AB} and \overrightarrow{BC} lie in the plane. So, as in the previous article the equation of plane becomes

$$\vec{r} = \vec{a} + \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}$$
 Of $\vec{r} = \vec{a} + \lambda (\vec{b} - \vec{a}) + \mu (\vec{c} - \vec{a})$

$$\implies \vec{r} = (1 - \lambda - \mu) \vec{a} + \lambda \vec{b} + \mu \vec{c}$$

INTERCEPT FORM OF A PLANE

This is a special case of the previous article. The equation of a plane intercepting the coordinate axes at (a, 0, 0), (0, b, 0) and (0, 0, c) is

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

JEE Main Maths Revision Notes

<mark>∛S</mark>aral

Å

ANGLE BETWEEN TWO LINES

The angle between two planes is defined as the angle between their normals. If \vec{n}_1 and \vec{n}_2 are the normals and θ is the angle then

 $\cos \theta = \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1| |\vec{n}_2|}$

Obviously, two planes are perpendicular if $\vec{n}_1 \cdot \vec{n}_2 = 0$.

They are parallel if $\vec{n}_1 = \lambda \vec{n}_2$ where λ is a scalar.

FAMILY OF PLANES

PLANE PARALLEL TO A GIVEN PLANE

Since parallel planes have the same normal vector, so equation of a plane parallel to $\vec{r}.\hat{n} = d_1$ is of the form $\vec{r}.\hat{n} = d_2$, where d_2 is determined by the given conditions.

In Cartesian form, if ax + by + cz + d = 0 be the given plane then the plane parallel to this plane is ax + by + cz + k = 0.

PLANE PASSING THROUGH INTERSECTION OF TWO PLANES

Two planes intersect in a line if they are not parallel. Any plane through the line of intersection of two planes can be written as

 $(\vec{r}.\vec{n}_1 - d_1) + \lambda(\vec{r}.\vec{n}_2 - d_2) = 0$

JEE Main Maths Revision Notes

∛Saral

DISTANCE OF A POINT FROM A PLANE

The perpendicular distance of a point $P(\vec{p})$ from the plane $\vec{r}.\vec{n} = d$ is given by $\frac{|\vec{p}.\vec{n} - d|}{|\vec{n}|}$

In Cartesian form, the perpendicular distance of $P(x_1, y_1, z_1)$ from the plane

ax + by + cz + d = 0 is equal to $\frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$

DISTANCE BETWEEN PARALLEL PLANES

The distance between $ax + by + cz + d_1 = 0$ and $ax + by + cz + d_2 = 0$ is given by

 $\frac{\mid d_1 - d_2 \mid}{\sqrt{a^2 + b^2 + c^2}}$

BISECTORS OF TWO PLANES

If the equations of planes are $a_1x + b_1y + c_1z + d_1 = 0$ and $a_1x + b_1y + c_1z + d_2 = 0$

the planes bisecting these angles are given by

$$\frac{a_1x + b_1y + c_1z + d_1}{\sqrt{a_1^2 + b_1^2 + c_1^2}} = \pm \frac{a_2x + b_2y + c_2z + d_2}{\sqrt{a_2^2 + b_2^2 + c_2^2}}$$

<mark>∛</mark>Saral

Ą

ANGLE BETWEEN A LINE AND A PLANE

Let the line be $\vec{r} = \vec{a} + \lambda \vec{b}$ and the plane be $\vec{r} \cdot \vec{n} = d$. If θ is the

angle between them then

$$\cos(90^\circ - \theta) = \frac{\vec{b}.\vec{n}}{|\vec{b}||\vec{n}|}$$
$$\implies \sin \theta = \frac{\vec{b}.\vec{n}}{|\vec{b}||\vec{n}|}$$

In Cartesian form, if the plane is ax + by + cz + d = 0 and line is $\frac{x - x_1}{l} = \frac{y - y_1}{m} = \frac{z - z_1}{n}$ then $\sin \theta = \frac{al + bm + cn}{\sqrt{a^2 + b^2 + c^2}\sqrt{l^2 + m^2 + n^2}}$

so, the condition that line is parallel to the plane is $\vec{b}.\vec{n}=0$ or al + bm + cn = 0

and the condition of perpendicularity is $\vec{b} = \lambda \vec{n}$ or $\frac{l}{a} = \frac{m}{b} = \frac{n}{c}$

CONDITION FOR A LINE TO LIE IN A PLANE

Vector form: $\vec{a} \cdot \vec{n} = d$ and $\vec{b} \cdot \vec{n} = 0$