THREE DIMENSIONAL GEOMETRY

DISTANCE FORMULA

The distance between two points P and Q having coordinates $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
P Q=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}
$$

SECTION FORMULA

The coordinates of the point R which divides the line joining two points $P\left(x_{1}, y_{1}, z_{1}\right)$ and
$Q\left(x_{2}, y_{2}, z_{2}\right)$ in the ratio $m: n$ are given by

$$
\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}, \frac{m z_{2}+n z_{1}}{m+n}
$$

The division may be internal or external

DIRECTION COSINES

If the position vector of a point P i.e., $\overrightarrow{O P}$ makes angles α, β and γ with the positive direction of x, y and z axis

respectively, then $\cos \alpha, \cos \beta$
and $\cos \gamma$ are called its
direction cosines. They are also denoted by l, m and n respectively.
i.e., $l=\cos \alpha, m=\cos \beta, n=\cos \gamma$.

DIRECTION RATIOS

If a, b, c three numbers such that $\frac{a}{l}=\frac{b}{m}=\frac{c}{n}$
where l, m, n are direction cosines of a vector \vec{r}, then a, b, c are known as direction numbers or direction ratios of \vec{r}.
Two vectors having direction ratios a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} are parallel if $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$.
They are perpendicular if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$.

VECTOR EQUATION OF A LINE PASSING THROUGH A GIVEN POINT AND PARALLEL TO A GIVEN VECTOR

Let A be a fixed point having position vector \vec{a} and the line is parallel to the vector $\vec{b} . P$ is
 an arbitrary point having position vector \vec{r} on the line.
From $\triangle \mathrm{OAP}, \overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P}$

$$
\Rightarrow \quad \vec{r}=\vec{a}+\lambda \vec{b}
$$

This is the required equation of line. λ is an arbitrary real number.

CARTESIAN EQUATION OF A LINE PASSING THROUGH A GIVEN POINT AND GIVEN DIRECTION RATIOS

Let $A\left(x_{1}, y_{2}, z_{3}\right)$ be the fixed point and the line has direction ratios p_{1}, p_{2}, p_{3}.

$$
\frac{x-\mathrm{x}_{1}}{\mathrm{p}_{1}}=\frac{\mathrm{y}-\mathrm{y}_{2}}{\mathrm{p}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{3}}{\mathrm{p}_{3}}=\lambda
$$

This is the Cartesian equation of the line also called symmetrical form of line.
Any point on this line can be taken as

$$
\left(x_{1}+p_{1} \lambda, x_{2}+p_{2} \lambda, x_{3}+p_{3} \lambda\right) .
$$

VECTOR EQUATION OF A LINE PASSING THROUGH TWO GIVEN POINTS

Let A and B be two fixed points having position vectors à and \bar{b}. P is a variable point on the line.

From \triangle OPA again, $\quad \overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P}$
$\Rightarrow \quad \overrightarrow{O P}=\overrightarrow{O A}+\lambda(\overrightarrow{A B})$
$\Rightarrow \vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$
This is the required equation.

CARTESIAN EQUATION OF A LINE PASSING THROUGH TWO GIVEN POINTS

If coordinates of A and B are $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$, the Cartesian equation is given by

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

ANGLE BETWEEN TWO LINES

If two lines are parallel to vectors \vec{b}_{1} and \vec{b}_{2}, the angle between them is given by

$$
\cos \theta=\frac{\vec{b}_{1} \cdot \vec{b}_{2}}{\left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|}
$$

SHORTEST DISTANCE BETWEEN TWO LINES

If $\vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\lambda \vec{b}_{2}$ are two skew lines, the shortest distance between them is the perpendicular distance.

$$
d=\left|\frac{\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|=\left|\frac{\left.\mid \vec{b}_{1} \vec{b}_{2}\left(\vec{a}_{2}-\vec{a}_{1}\right)\right]}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|
$$

Clearly two lines intersect if $\left[\vec{b}_{1} \vec{b}_{2}\left(\vec{a}_{2}-\vec{a}_{1}\right)\right]=0$
If the lines are parallel,
i.e., $\vec{r}=\vec{a}_{1}+\lambda \vec{b}$
and $\vec{r}=\vec{a}_{2}+\lambda \vec{b}$
the formula to calculate shortest distance becomes

$$
d=\frac{\left|\left(\vec{a}_{2}-\vec{a}_{1}\right) \times \vec{b}\right|}{|\vec{b}|}
$$

PERPENDICULAR DISTANCE OF A POINT FROM A LINE

The perpendicular distance d can be obtained using vector form as well as Cartesian form of the line.
Let the line be $\vec{r}=\vec{a}+\lambda \vec{b}$ and p
be the point
$\Rightarrow d=\left|\frac{(\vec{p}-\vec{a}) \times \vec{b}}{|\vec{b}|}\right|$

EQUATION OF A PLANE PASSING THROUGH THREE GIVEN POINTS

If three non-collinear points are given, there is a unique plane passing through them. Let the points be A, B and C having position vectors \vec{a}, \vec{b} and \vec{c}. Then $\overrightarrow{A B}$ and $\overrightarrow{B C}$ lie in the plane. So, as in the previous article the equation of plane becomes

$$
\begin{aligned}
& \vec{r}=\vec{a}+\lambda \overrightarrow{A B}+\mu \overrightarrow{A C} \text { or } \vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})+\mu(\vec{c}-\vec{a}) \\
\Rightarrow \quad & \vec{r}=(1-\lambda-\mu) \vec{a}+\lambda \vec{b}+\mu \vec{c}
\end{aligned}
$$

INTERCEPT FORM OF A PLANE

This is a special case of the previous article. The equation of a plane intercepting the coordinate axes at $(a, 0,0),(0, b, 0)$ and $(0,0, c)$ is

$$
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
$$

ANGLE BETWEEN TWO LINES

The angle between two planes is defined as the angle between their normals. If \vec{n}_{1} and \vec{n}_{2} are the normals and θ is the angle then

$$
\cos \theta=\frac{\vec{n}_{1} \cdot \vec{n}_{2}}{\left|\vec{n}_{1}\right|\left|\vec{n}_{2}\right|}
$$

Obviously, two planes are perpendicular if $\vec{n}_{1} \cdot \vec{n}_{2}=0$.
They are parallel if $\vec{n}_{1}=\lambda \vec{n}_{2}$ where λ is a scalar.

FAMILY OF PLANES

PLANE PARALLEL TO A GIVEN PLANE

Since parallel planes have the same normal vector, so equation of a plane parallel to $\vec{r} \cdot \hat{n}=d_{1}$ is of the form $\vec{r} . \hat{n}=d_{2}$, where d_{2} is determined by the given conditions.
In Cartesian form, if $a x+b y+c z+d=0$ be the given plane then the plane parallel to this plane is $a x+b y+c z+k=0$.

PLANE PASSING THROUGH INTERSECTION OF TWO PLANES

Two planes intersect in a line if they are not parallel. Any plane through the line of intersection of two planes can be written as $\left(\vec{r} . \vec{n}_{1}-d_{1}\right)+\lambda\left(\vec{r} \cdot \tilde{n}_{2}-d_{2}\right)=0$

DISTANCE OF A POINT FROM A PLANE

The perpendicular distance of a point $P(\vec{p})$ from the plane $\vec{r} \cdot \vec{n}=d$ is given by $\frac{|\bar{p} \cdot \bar{n}-d|}{|\vec{n}|}$
In Cartesian form, the perpendicular distance of $P\left(x_{1}, y_{1}, z_{1}\right)$ from the plane
$a x+b y+c z+d=0$ is equal to $\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}$

DISTANCE BETWEEN PARALLEL PLANES

The distance between $a x+b y+c z+d_{1}=0$ and $a x+b y+c z+d_{2}$
$=0$ is given by

$$
\frac{\left|d_{1}-d_{2}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

BISECTORS OF TWO PLANES

If the equations of planes are $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ and $a_{1} x+$ $b_{1} y+c_{1} z+d_{2}=0$
the planes bisecting these angles are given by

$$
\frac{a_{1} x+b_{1} y+c_{1} z+d_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}= \pm \frac{a_{2} x+b_{2} y+c_{2} z+d_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
$$

ANGLE BETWEEN A LINE AND A PLANE

Let the line be $\vec{r}=\vec{a}+\lambda \vec{b}$ and the plane be $\vec{r} . \vec{n}=d$. If θ is the angle between them then

$$
\begin{aligned}
& \cos \left(90^{\circ}-\theta\right)=\frac{\vec{b} \cdot \vec{n}}{|\vec{b}||\vec{n}|} \\
\Rightarrow \quad & \sin \theta=\frac{\vec{b} \cdot \vec{n}}{|\vec{b}||\vec{n}|}
\end{aligned}
$$

In Cartesian form, if the plane is $a x+b y+c z+d=0$ and line is $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$
then $\sin \theta=\frac{a l+b m+c n}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{l^{2}+m^{2}+n^{2}}}$
so, the condition that line is parallel to the plane is $\vec{b} \cdot \vec{n}=0$ or $a l+$ $b m+c n=0$ and the condition of perpendicularity is $\vec{b}=\lambda \vec{n}$ or $\frac{l}{a}=\frac{m}{b}=\frac{n}{c}$

CONDITION FOR A LINE TO LIE IN A PLANE

Vector form: $\vec{a} \cdot \vec{n}=d$ and $\vec{b} . \vec{n}=0$

