MATHEMATICS

1. If $f(x)=\left\{\begin{array}{cc}x-2 & 0 \leq x \leq 2 \\ -2 & -2 \leq x \leq 0\end{array}\right.$ and $h(x)=f(|x|)+|f(x)|$ then $\int_{0}^{k} h(x) d x$ is equal to $(k>0)$
(1) 0
(2) $\frac{k}{2}$
(3) 2 k
(4) k

Ans. (1)
Sol. $f(|x|)=\left\{\begin{array}{ll}-2-x, & x<0 \\ x-2, & x>0\end{array}|f(x)|=\left\{\begin{array}{l}2, x<0 \\ 2-x, \quad x>0\end{array}\right.\right.$
$\Rightarrow h(x)=f(|x|)+|f(x)|= \begin{cases}-x, & x<0 \\ 0, & x>0\end{cases}$
$\Rightarrow \int_{0}^{k} h(x) d x=\int_{0}^{k} O d x=0$
2. There are three bags A, B and C. Bag A contain 7 Black balls and 5 Red balls, Bag B contains 5 Red and 7 Black balls and Bag C contain 7 Red and 7 Black balls. A ball is drawn and found to be black find probability that it is drawn from Bag A.
Ans. $\left(\frac{7}{18}\right)$

Sol.

$$
\operatorname{Prob}=\frac{\frac{7}{12}}{\frac{7}{12}+\frac{5}{12}+\frac{7}{14}}
$$

$$
\begin{aligned}
& =\frac{\frac{7}{6}}{\frac{7}{6}+\frac{5}{6}+1} \\
& =\frac{7}{7+5+6}=\frac{7}{18}
\end{aligned}
$$

3. Find the number of rational numbers in the expansion of $\left(2^{\frac{1}{5}}+5^{\frac{1}{3}}\right)^{15}$.

Ans. (2)
Sol. $\quad T_{r+1}={ }^{15} C_{r}\left(2^{1 / 5}\right)^{15-r}\left(5^{1 / 3}\right)^{r}$
$={ }^{15} C_{r} 2^{3-\frac{r}{5}} \cdot 5^{\frac{r}{3}} ; r=3 K \& 5 K$
There $r=0 ; 15$
So Total No. of Rational Terms are "2".
4. Find value of $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{1+\sin x \cos x} d x$

Ans. $\quad\left(\frac{\pi}{3 \sqrt{3}}\right)$
Sol. $\quad \Rightarrow I=\int_{0}^{\pi / 2} \frac{\cos ^{2} x d x}{1+\sin x \cos x}$

$$
\begin{aligned}
& \therefore 2 I=\int_{0}^{\pi / 2} \frac{2 d x}{2+\sin 2 x} \\
& I=\int_{0}^{\pi / 2} \frac{d x}{2+\frac{2 \tan x}{1+\tan ^{2} x}}
\end{aligned}
$$

$$
21=\int_{0}^{\pi / 2} \frac{\sec ^{2} x d x}{\tan ^{2} x+\tan x+1}
$$

$$
2 l=\int_{0}^{\infty} \frac{d t}{t^{2}+t+1}
$$

$$
21=\int_{0}^{\infty} \frac{d t}{\left(t+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}
$$

$$
21=\frac{1}{\sqrt{3} / 2}\left[\tan ^{-1}\left(\frac{\mathrm{t}+\frac{1}{2}}{\sqrt{3} / 2}\right)\right]_{0}^{\infty}
$$

$$
\mathrm{I}=\frac{1}{\sqrt{3}}\left[\frac{\pi}{2}-\frac{\pi}{6}\right]
$$

$$
I=\frac{\pi}{3 \sqrt{3}}
$$

5. If $x^{2}-a x+b=0$ has roots 2,6 ; and $\alpha=\frac{1}{2 a+1} ; \beta=\frac{1}{2 b-a}$. Find equation having roots α, β.

Ans. $\quad\left(272 x^{2}-33 x+1=0\right)$
Sol. $a=2+6=8$
b $=2 \times 6=12$
$\alpha=\frac{1}{17} ; \beta=\frac{1}{16}$
Required $E Q^{n}=x^{2}-\left(\frac{1}{17}+\frac{1}{16}\right) x+\frac{1}{17} \times \frac{1}{16}$
$\Rightarrow 272 x^{2}-33 x+1=0$
6. $\lim _{x \rightarrow 4} \frac{(5+x)^{\frac{1}{3}}-(1+2 x)^{\frac{1}{3}}}{(5+x)^{\frac{1}{2}}-(1+2 x)^{\frac{1}{2}}}$

Ans. $\left(\frac{2 \times 9^{1 / 3}}{9}\right)$

Sol. $\quad \lim _{x \rightarrow 4} \frac{(5+x)^{1 / 3}-(1+2 x)^{1 / 3}}{(5+x)^{1 / 2}-(1+2 x)^{1 / 2}}$
$\frac{(9+h)^{1 / 3}-(9+2 h)^{1 / 3}}{(9+h)^{1 / 2}-(9+2 h)^{1 / 2}}=\frac{9^{1 / 3}\left[\frac{h}{27}-\frac{2 h}{27}\right]}{3\left(\frac{h}{18}-\frac{h}{9}\right)}$
$=\frac{9^{1 / 3}}{3} \frac{\left(\frac{-h}{27}\right)}{\frac{-h}{18}}$
$=\frac{2 \times 9^{1 / 3}}{9}$
7. $A B, B C, C A$ are sides of triangle having $5,6,7$ points respectively. How many triangles are possible using these points.
Ans. (751)
Sol. $\quad{ }^{18} C_{3}-{ }^{5} C_{3}-{ }^{6} C_{3}-{ }^{7} C_{3}$
$=17 \times 16 \times 3-10-20-35$
$=816-65=751$
8. $2, p$ and q are in G.P. in an A.P. 2 is third term, p is $7^{\text {th }}$ term and q is $8^{\text {th }}$ term find p and q.

Ans. $\left(P=\frac{1}{2}, q=\frac{1}{8}\right)$
Sol. $\quad p=2 r, q=2 r^{2}$
In A.P.

$$
\begin{aligned}
& A+2 d=2 \\
& A+6 d=2 r \\
& A+7 d=2 r^{2}
\end{aligned}
$$

By Solving $r=\frac{1}{4}$
$P=\frac{1}{2}, q=\frac{1}{8}$
9. If the domain of the function $\sin ^{-1}\left(\frac{3 x-22}{2 x-19}\right)+\log _{e}\left(\frac{3 x^{2}-8 x+5}{x^{2}-3 x-10}\right)$ is $[\alpha, \beta]$ then $3 \alpha+10 \beta$ is equal to
(1) 100
(2) 95
(3) 97
(4) 98

Ans. (3)
Sol. $-1 \leq \frac{3 x-22}{2 x-19} \leq 1$
$\frac{3 x-22}{2 x-19}+1 \geq 0$
$\frac{5 x-41}{2 x-19} \geq 0 \Rightarrow x \in\left(-\infty, \frac{41}{5}\right] \cup\left(\frac{19}{2}, \infty\right)$
$\frac{3 x-22}{2 x-19}-1 \leq 0$
$\frac{x-3}{2 x-19} \leq 0 \Rightarrow x \in\left[3, \frac{19}{2}\right)$

$\frac{3 x^{2}-3 x-5 x+5}{x^{2}-5 x+2 x-10}>0$
$\frac{(3 x-5)(x-1)}{(x-5)(x+2)}>0$

$\Rightarrow\left[5, \frac{41}{5}\right]$
$=3 \times 5+10 \times \frac{41}{5}$
$=15+82=97$
10. $x+(2 \sin 2 \theta) y+2 \cos 2 \theta=0$
$x+(\sin \theta) y+\cos \theta=0$
$x+(\cos \theta) y-\sin \theta=0$
find nontrivial solution
Ans. $\quad\left(\alpha=\cos ^{-1}\left(\frac{1}{2 \sqrt{2}}\right)\right)$
Sol. $\quad\left|\begin{array}{ccc}1 & 2 \sin 2 \theta & 2 \cos \theta \\ 1 & \sin \theta & \cos \theta \\ 1 & \cos \theta & -\sin \theta\end{array}\right|=0$
$1\left[-\sin ^{2} \theta-\cos ^{2} \theta\right]-2 \sin 2 \theta[-\sin \theta-\cos \theta]+2 \cos 2 \theta[\cos \theta-\sin \theta]=0$
$-1+2 \sin 2 \theta(\sin \theta+\cos \theta]+2 \cos 2 \theta[\cos \theta-\sin \theta]=0$
$-1+2 \sin \theta \sin 2 \theta+2 \sin 2 \theta \cos \theta+2 \cos \theta \cos 2 \theta-2 \cos 2 \theta \sin \theta=0$
$-1+2 \cos \theta+2 \sin \theta=0$
$\sin \theta+\cos \theta=\frac{1}{2}$
$\frac{1}{\sqrt{2}} \sin \theta+\frac{1}{\sqrt{2}} \cos \theta=\frac{1}{2 \sqrt{2}}$
$\cos \left(\theta-\frac{\pi}{4}\right)=\cos \alpha$
$\theta-\frac{\pi}{4}=2 n \pi \pm \alpha$
where $\alpha=\cos ^{-1}\left(\frac{1}{2 \sqrt{2}}\right)$
11. Let $f(x)=x^{5}+2 e^{x / 4}$ for all $x \in R$. consider a function (gof)($\left.x\right)=x$ for all $x \in R$. Then the value of $8 g^{\prime}(2)$ is
(1) 4
(2) 16
(3) 8
(4) 2

Ans. (2)
Sol. $\quad g(f(x))=x$
$g^{\prime}(f(x)) \cdot f^{\prime}(x)=1$
$g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)} \quad ;$
$f^{\prime}(x)=5 x^{4}+\frac{1}{2} e^{x / 4}$
$g^{\prime}(2)=\frac{1}{f^{\prime}(0)}=\frac{1}{2 / 4}=2$
$f^{\prime}(0)=\frac{1}{2}$
$8^{\prime} g^{\prime}(2)=16$
12. Let $f(x)=\frac{2 x^{2}-3 x+9}{2 x^{2}+3 x+4}$. If maximum value of $f(x)$ is m and minimum value of $f(x)$ is n then find
$m+n$?
Ans. (10)
Sol. $y=\frac{2 x^{2}-3 x+9}{2 x^{2}+3 x+4}$
$y\left(2 x^{2}+3 x+4\right)=2 x^{2}-3 x+9$
$(y-1) 2 x^{2}+3 x(y+1)+4 y-9=0$
If $\mathrm{y} \neq 1 \Rightarrow \mathrm{D} \geq 0$
$9(y+1)^{2}-4(y-1)(4 y-9) \geq 0$
$9\left(y^{2}+2 y+1\right)-4\left(4 y^{2}-9 y-4 y+9\right) \geq 0$
$9 y^{2}-16 y^{2}+18 y+52 y+9-36 \geq 0$
$-7 y^{2}+70 y-27 \geq 0$
$7 y^{2}-70 y+27 \leq 0 \quad$ has roots α and $\beta \quad y=\frac{70 \pm \sqrt{4900-4 \times 7 \times 27}}{2 \times 7}$
$\Rightarrow \alpha \leq y \leq \beta$
$y=\frac{70 \pm \sqrt{4144}}{14}$
$\alpha=m=\frac{70-\sqrt{4144}}{14}$
$\beta=n=\frac{70+\sqrt{4144}}{14}$
$=m+n=10$
13. $f(x)=\left\{\begin{array}{cl}\frac{1-\cos 2 x}{x^{2}} & x<0 \\ \alpha & x=0 \\ \beta \frac{\sqrt{1-\cos x}}{x} & x>0\end{array}\right.$. If $f(x)$ is continuous at $x=0$ find $\alpha^{2}+\beta^{2}$.

Ans. (12)

Sol. $\lim _{x \rightarrow 0^{-}} \frac{1-\cos 2 x}{x^{2}}=2=\alpha=\lim _{x \rightarrow 0^{+}} \beta \sqrt{\frac{1-\cos x}{x^{2}}}=\frac{\beta}{\sqrt{2}}$.
Hence $\alpha^{2}+\beta^{2}=4+8=12$
14. Let α and β be the sum and the product of all the nonzero solutions of the equation $(\bar{z})^{2}+|z|=0, z \in C$ then $4\left(\alpha^{2}+\beta^{2}\right)$ is equal to
(1) 6
(2) 2
(3) 4
(4) 8

Ans. (4)
Sol. $\quad \bar{z}^{2}+|z|=0$
$x^{2}-y^{2}-2 x y i+\sqrt{x^{2}+y^{2}}=0$
$x=0$
$y^{2}=\sqrt{y^{2}}$
$y^{2}=|y| \quad y=1,-1$
i, -i
$y=0$
$x^{2}+\sqrt{x^{2}+y^{2}}=0 \quad$ No non zero solution
$\alpha=0 \quad \beta=1$
$4\left(\alpha^{2}+\beta^{2}\right)=4$
15. A square is inscribed in the circle $x^{2}+y^{2}-10 x-6 y+30=0$. One side of this square is parallel to $y=x+3$. If $\left(x_{i}, y_{i}\right)$ are the vertices of the square, then $\sum\left(x_{i}^{2}+y_{i}^{2}\right)$ is equal to:
(1) 148
(2) 156
(3) 152
(4) 160

Ans. (3)

Sol.

$$
\sum x_{i}^{2}+y_{i}^{2}=25+25+49+9+25+1+9+9=152
$$

16. If differential equation satisfies $\frac{d y}{d x}-y=\cos x$ at $x=0, y=\frac{-1}{2}$. Find $y\left(\frac{\pi}{4}\right)$.

Ans. (0)

Sol. $\frac{d y}{d x}-y=\cos x$
$1 \cdot f=e^{j-1 d x}=e^{-x}$
$y \cdot e^{-x}=\int e^{-x} \cdot \cos x d x$
$1=\int e^{-x} \cos x d x$
$I=\left(-e^{-x}\right) \cos x-\int(-\sin x)\left(-e^{-x}\right) d x$
$I=-e^{-x} \cos x-\int e^{-x} \sin x d x$
$1=-e^{-x} \cos x-\left[\left(-e^{-x}\right) \sin x+\int e^{-x} \cos x d x\right]$
$1=-e^{-x} \cos x+e^{-x} \sin x-1$
$21=e^{-x}(\sin x-\cos x)$
$y \cdot e^{-x}=\frac{e^{-x}(\sin x-\cos x)}{2}+c$
$y=\frac{(\sin x-\cos x)}{2}+c$
$c=0$
$y\left(\frac{\pi}{4}\right)=\frac{\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}}{2}=0$
17. Let $\alpha, \beta, \in R$. Let the mean and the variance of 6 observations $-3,4,7,-6, \alpha, \beta$ be 2 and 23 respectively. The mean deviation about the mean of these 6 observations is
(1) $\frac{11}{3}$
(2) $\frac{16}{3}$
(3) $\frac{13}{3}$
(4) $\frac{14}{3}$

Ans. (3)
Sol. $\bar{x}=2=\frac{-3+4+7-6+\alpha+\beta}{6} \Rightarrow \alpha+\beta=10$
$\sigma^{2}=23=\frac{(-3-2)^{2}+(4-2)^{2}+(7-2)^{2}+(-6-2)^{2}+(\alpha-2)^{2}+(\beta-2)^{2}}{6}$
$\Rightarrow \alpha^{2}+\beta^{2}=52$
$\therefore \alpha=6 \& \beta=4$
\therefore M. D. about mean $=\frac{13}{3}$
18. $\vec{a}=2 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-\hat{k}$, \vec{c} is an unit vector making angle 60° with \vec{a} and 45° with \vec{b}. Find \vec{c}
Ans. (1)
Sol. Let $\overrightarrow{\mathrm{c}}=\mathrm{C}_{1} \hat{i}+\mathrm{C}_{2} \hat{j}+\mathrm{C}_{3} \hat{k}$, where $2 \mathrm{C}_{1}+2 \mathrm{C}_{2}-\mathrm{C}_{3}=\frac{3}{2}$
$\mathrm{C}_{1}-\mathrm{C}_{2}=1$
$C_{1}^{2}+C_{2}^{2}+C_{3}^{2}=1$.
19. If the length of focal chord of $y^{2}=12 x$ is 15 and if the distance of the focal chord from origin is p then $10 p^{2}$ is equal to
(1) 36
(2) 25
(3) 72
(4) 144

Ans. (3)
Sol.

$y^{2}=4(3) x ; a=3 \quad \Rightarrow$ focus $=(3,0)$
$\mathrm{t}_{1} \mathrm{t}_{2}=-1$
$A=3 t^{2}, 6 t$
then $B=\frac{3}{t^{2}}, \frac{-6}{t}$
$A B=$ length of focal chord
$=a\left(t_{1}-t_{2}\right)^{2}$
$=3\left(t+\frac{1}{t}\right)^{2}=15$
$3\left(t+\frac{1}{t}\right)^{2}=15$
$t+\frac{1}{t}=\sqrt{5}$
$t-\frac{1}{t}=\sqrt{\left(t+\frac{1}{t}\right)^{2}-4}$
$t-\frac{1}{t}=1$
$m_{A B}=\frac{6 t-\frac{6}{t}}{3 t^{2}-\frac{3}{t^{2}}}$
$m_{A B}=\frac{2}{t-\frac{1}{t}}$
$\therefore \mathrm{m}_{\mathrm{AB}}=2$
Equation of $A B$: $y-0=2(x-3)$
$y=2 x-6$
$2 x-y-6=0$
Distance from origin, $P=\frac{|2(0)-0-6|}{\sqrt{2^{2}+1}}=\frac{6}{\sqrt{5}}$
$10 P^{2}=\frac{10 \times 36}{5}=72$
20. Shortest distance between lines $\frac{x+1}{-2}=\frac{y}{2}=\frac{z-1}{1}$ and $\frac{x-5}{2}=\frac{y-2}{-3}=\frac{z-1}{1}$ is $\frac{38 k}{6 \sqrt{5}}$, find $\int_{0}^{1}\left[x^{2}\right] d x$
Ans. $\quad(5-\sqrt{2}-\sqrt{3})$
Sol. $\quad S \cdot D=\frac{(6 \hat{i}+2 \hat{j}) \cdot(5 \hat{i}+4 \hat{j}+2 \hat{k})}{\sqrt{45}}=\frac{38}{3 \sqrt{5}}=\frac{38 k}{6 \sqrt{5}} \Rightarrow k=2$
$\int_{0}^{2}\left[x^{2}\right] d x=\int_{1}^{\sqrt{2}} d x+\int_{\sqrt{2}}^{\sqrt{3}} 2 d x+\int_{\sqrt{3}}^{2} 3 d x=(\sqrt{2}-1)+2(\sqrt{3}-\sqrt{2})+3(2-\sqrt{3})=5-\sqrt{2}-\sqrt{3}$
21. $y=y(x)$ is a solution of the differential equation
$\left(x^{4}+2 x^{3}+3 x^{2}+2 x+2\right) d y-\left(2 x^{2}+2 x+3\right) d x=0$. If $y(0)=\frac{\pi}{4}$. Find $y(-1)$
Ans. $\left(-\frac{\pi}{4}\right)$
Sol. $\quad \frac{d y}{d x}=\frac{2 x^{2}+2 x+3}{x^{4}+2 x^{3}+3 x^{2}+2 x+2}$
$\frac{d y}{d x}=\frac{\left(x^{2}+1\right)+\left(x^{2}+2 x+2\right)}{\left(x^{2}+1\right)\left(x^{2}+2 x+2\right.}=\frac{1}{(x+1)^{2}+1}+\frac{1}{x^{2}+1}$
Hence $y=\tan ^{-1} x+\tan ^{-1}(x+1)+c$
If $y(0)=\frac{\pi}{4} \Rightarrow c=0$
So $y(-1)=-\frac{\pi}{4}$
22. Curve $y=1+3 x-2 x^{2}$ and $y=\frac{1}{x}$ intersects at point $\left(\frac{1}{2}, 2\right)$ then area enclosed between curve is $\frac{1}{24}(\ell \sqrt{5}+m)-n \log _{e}(1+\sqrt{5})$ then find the value of $\ell+m+n$ is
Ans. (30)
Sol. $\quad 1+3 x-2 x^{2}=\frac{1}{x}$
$\Rightarrow \mathrm{x}+3 \mathrm{x}^{2}-2 \mathrm{x}^{3}=1$
$\Rightarrow 2 x^{3}-3 x^{2}-x+1=0$
$\Rightarrow 2 x^{3}-x^{2}-2 x^{2}+x-2 x+1=0$
$\Rightarrow(2 x-1) x^{2}-x(2 x-1)-1(2 x-1)=0$
$\Rightarrow(2 x-1)\left(x^{2}-x-1\right)=0$
$x=\frac{1}{2} \quad$ or $\quad x^{2}-x-1=0$
$x=\frac{1 \pm \sqrt{5}}{2}$
$x=\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}$
Area $=\int_{1 / 2}^{\frac{\sqrt{5}+1}{2}}\left(\left(-2 x^{2}+3 x+1\right)-\frac{1}{x}\right) d x$
$=\left[-\frac{2 x^{3}}{3}+\frac{3 x^{2}}{2}+x-\ln x\right]_{1 / 2}^{\frac{\sqrt{5}+1}{2}}$
$=\left(-\frac{2}{3}\left(\frac{\sqrt{5}+1}{2}\right)^{3}+\frac{3}{2}\left(\frac{\sqrt{5}+1}{2}\right)^{2}+\left(\frac{\sqrt{5}+1}{2}\right)-\ln \left(\frac{\sqrt{5}+1}{2}\right)\right)$
$-\left(-\frac{1}{12}+\frac{3}{8}+\frac{1}{2}-\ln \frac{1}{2}\right)$
$=-\frac{1}{12}(5 \sqrt{5}+1+3 \sqrt{5}(\sqrt{5}+1))+\frac{3}{8}(6+2 \sqrt{5})+\frac{\sqrt{5}+1}{2}$
$-\ln (\sqrt{5}+1)+\ln 2-\left(\frac{-2+9+12}{24}\right)-\ln 2$
$=-\frac{1}{12}(16+8 \sqrt{5})+\frac{3}{4}(3+\sqrt{5})+\frac{\sqrt{5}+1}{2}-\frac{19}{24}-\ln (\sqrt{5}+1)$
$=\frac{1}{24}[-32-16 \sqrt{5}+54+18 \sqrt{5}+12 \sqrt{5}+12-19]-\ln (\sqrt{5}+1)$
$=\frac{1}{24}[15+14 \sqrt{5}]-\ln (\sqrt{5}+1)$
So $\ell=14, \mathrm{~m}=15, \mathrm{n}=1$
Hence $\ell+\mathrm{m}+\mathrm{n}=14+15+1=30$

PHYSICS

1. A metallic wire of uniform mass density having mass M and length l is bent to form a semicircle. A point mass m is kept at the centre of the semicircle. Find the gravitational forced experienced by m.
Ans. $\frac{2 \pi G M m}{L^{2}}$
Sol. $\quad r=\frac{L}{\pi}$
$d g=\frac{G d m}{r^{2}} \sin \theta$
$=\frac{G}{r^{2}} \frac{M}{L} r d \theta \sin \theta$
$=\frac{G}{g}=\frac{G}{r} \cdot \frac{M}{L} \int_{0}^{\pi} \sin \theta d \theta$

$g=\frac{G M}{r L}(2)$
$F=m g$
$=m^{2} \frac{G M}{r L}$
$=\frac{2 \mathrm{GMm}}{\mathrm{L}} \frac{\pi}{\mathrm{L}}$
$=\frac{2 \pi \mathrm{GMm}}{\mathrm{L}^{2}}$
2. 5 convex lens are kept together each having power of 25 D . Find the focal length.

Ans. 0.8 cm
Sol. $\quad P_{\text {eq }}=P \times 5$
$=25 \times 5$
$=125 \mathrm{D}$
$\frac{1}{f_{e q}}=125 \mathrm{~m}$
$=\frac{100}{125} \mathrm{~cm}$
$=\frac{4}{5} \mathrm{~cm}$
$=0.8 \mathrm{~cm}$
3. Position of a particle is related to time as given equation

$$
x=t^{4}+6 t^{2}+2 t
$$

Find its acceleration at $\mathrm{t}=5 \mathrm{sec}$.
Ans. $\quad 480 \mathrm{~m} / \mathrm{s}^{2}$
Sol. $\quad \mathrm{V}=\frac{\mathrm{dx}}{\mathrm{dt}}$
$V=4 t^{3}+18 t^{2}+2$
$a=\frac{d V}{d t}$
$=12 \mathrm{t}^{2}+36 \mathrm{t}$
At $\mathrm{t}=5 \mathrm{sec}$
$a=12 \times 25+36 \times 5$
$=300+180$
$=480 \mathrm{~m} / \mathrm{s}^{2}$
4. A body moving with constant acceleration covers $102.5 \mathrm{~m} \mathrm{in}^{\text {th }}$ second of its motion and covers 115.0 m in $(\mathrm{n}+2)^{\text {th }}$ second then find its acceleration.
Ans. $\quad 6.25 \mathrm{~m} / \mathrm{s}^{2}$
Sol. Let, acceleration =a (constant)
$S_{n}{ }^{\text {th }}=u+\frac{a}{2}[2 n-1]=102.5$
$S_{(n+2)^{\text {th }}}=u+\frac{a}{2}[2(n+2)-1]=115$
$\Rightarrow u+\frac{a}{2}[2 n+3]=115$
by using (i) and (ii)
$102.5-\frac{a}{2}[2 n-1]+\frac{a}{2}[2 n+3]=115$
$\Rightarrow 102.5+\frac{\mathrm{a}}{2}+\frac{3 \mathrm{a}}{2}=115$
$\Rightarrow 2 \mathrm{a}=115-102.5$
$\mathrm{a}=\frac{12.5}{2}=6.25 \mathrm{~m} / \mathrm{s}^{2}$
5. A particles of mass m dropped from height h above the ground. After collision, rises to height $h / 2$, Then loss in energy during collision and speed of particle just before collision respectively are.
(1) $50 \%, \sqrt{2 g h}$
(2) $40 \%, \sqrt{2 g h}$
(3) $50 \%, \sqrt{g h}$
(4) $40 \%, \sqrt{g h}$

Ans. (1)
Sol. $\quad \Delta \mathrm{E}=\mathrm{mg} \frac{\mathrm{h}}{2}-\mathrm{mgh}=-\mathrm{mg} \frac{\mathrm{h}}{2}$
i.e. 50% loss in energy
$v=\sqrt{2 g h}$
6. If the electric field vector at a point in an electromagnetic wave is given by $\vec{E}=40 \cos \omega\left(t-\frac{z}{c}\right) \hat{i}$ then corresponding \vec{B} will be:

Sol. $\vec{E}=40 \cos \omega\left(t-\frac{z}{c}\right) \hat{i}$
$|\vec{E}|=40 \cos \omega\left(t-\frac{z}{c}\right)$
$\frac{|\vec{E}|}{|\vec{B}|}=C$
$|\vec{B}|=\frac{40}{C} \cos \omega\left(t-\frac{z}{C}\right) ;$ also $\vec{E} \cdot \vec{B}=0$
7. Infinite charge sheet in xy plane of surface charge density σ and infinite long wire of linear charge density λ placed at $(0,0,4)$ and $\sigma=2 \lambda$. Then net electric field ($0,0,2$).
Ans. $\quad \mathrm{E}_{\mathrm{net}} \Rightarrow \frac{\lambda}{\varepsilon_{0}}\left[\frac{2 \pi \mathrm{r}-1}{2 \pi \mathrm{r}}\right] \mathrm{N} / \mathrm{C}$
Sol. Given : $\sigma=2 \lambda$
$E_{\text {net }}=\frac{\sigma}{2 \varepsilon_{0}}-\frac{2 K \lambda}{r}$
$E_{\text {net }}=\frac{2 \lambda}{2 \varepsilon_{0}}-\frac{2 \lambda}{4 \pi \varepsilon_{0} r}$
$\mathrm{E}_{\text {net }}==\frac{2 \lambda}{2 \varepsilon_{0}}-\frac{2 \lambda}{4 \pi \varepsilon_{0} r}$
$\Rightarrow \frac{\lambda}{\varepsilon_{0}}\left[\frac{2 \pi r-1}{2 \pi r}\right] N / C$

8. A hollow cylinder and solid sphere of same mass and radius are rolling with same initial velocity v on a rough inclined plane. Find the ratios of their kinetic energies and maximum height reached by them.
Ans. $\frac{10}{7}$
Sol. $\quad K_{\text {cylinder }}=\frac{1}{2} M V^{2}+\frac{1}{2} I_{c m} \omega^{2}=\frac{1}{2} M V^{2}+\frac{1}{2}\left(M R^{2}\right)\left(\frac{V}{R}\right)^{2}$
$=M V^{2}$
$K_{\text {sphere }}=\frac{1}{2} I_{\mathrm{cm}} \omega^{2}+\frac{1}{2} M V^{2}$
$=\frac{1}{2}\left(\frac{2}{5} M R^{2}\right)\left(\frac{V}{R}\right)^{2}+\frac{1}{2} M V^{2}$
$=\frac{1}{5} M V^{2}+\frac{1}{2} M V^{2}$
$=\frac{7}{10} \mathrm{MV}^{2}$
$\Rightarrow \frac{\mathrm{K}_{\text {cylinder }}}{\mathrm{k}_{\text {sphere }}}=\frac{10}{7}$
At top point kinetic energy will convert into potential energy

$$
\begin{aligned}
& \frac{\mathrm{Mgh}_{\text {cylinder }}}{\mathrm{Mgh}_{\text {sphere }}}=\frac{10}{7} \\
& \Rightarrow \frac{\mathrm{~h}_{\text {cylinder }}}{\mathrm{h}_{\text {sphere }}}=\frac{10}{7}
\end{aligned}
$$

9. In given equation $y=2 A \sin \left(\frac{2 \pi n t}{\lambda}\right) \cos \left(\frac{2 \pi x}{\lambda}\right)$. Find the dimension of n.

Ans. $\quad[\mathrm{n}]=\left[\mathrm{L}^{1} \mathrm{~T}^{-1}\right]$
Sol. $[n] \Rightarrow \frac{[2 \pi n t]}{[\lambda]}+M^{0} L^{0} T^{0}$
$\frac{[n]\left[\mathrm{T}^{1}\right]}{\left[\mathrm{L}^{1}\right]}=\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
$[\mathrm{n}]=\left[\mathrm{L}^{1} \mathrm{~T}^{-1}\right]$
10. When a conducting platinum wire is placed in ice, its resistance is 8Ω and when placed in steam it is 10Ω. Find the resistance of wire at $400^{\circ} \mathrm{C}$.
Ans. 8.8Ω
Sol. $\quad R_{T}=R_{0}(1+\alpha \Delta T)$
R_{0} at $0^{\circ} \Rightarrow 8 \Omega$
R_{T} at $100^{\circ} \mathrm{C} \rightarrow 10 \Omega$
$10=8(1+\alpha(100))$
$\frac{10}{8}=1+100 \alpha$
$\left(\frac{10}{8}-1\right) \times \frac{1}{100}=\alpha$
$\alpha=\frac{2}{8} \times \frac{1}{100}$
$\alpha=\frac{1}{400}$
R at 40°
$R=R_{0}(1+\alpha \Delta T)$
$=8\left(1+\frac{1}{400} \times 40\right)$
$=8\left(1+\frac{1}{10}\right)$
$=\frac{11 \times 8}{10}$
$R=8.8 \Omega$
11. Fractional error in image distance and object distance are $\frac{\Delta v}{v}$ and $\frac{\Delta u}{u}$ then find the fractional error in focal length of the given spherical mirror.
Ans. $\quad \Rightarrow \frac{d f}{f}=\frac{u v}{u+v}\left[\frac{d v}{v^{2}}+\frac{d u}{u^{2}}\right]$
Sol. $\frac{1}{f}=\frac{1}{v}+\frac{1}{u}$
$\frac{1}{f}=\frac{u+v}{u v}$
$f=\frac{u v}{u+v}$
$\Rightarrow-\frac{1}{f^{2}} d f=-\frac{d v}{v^{2}}-\frac{d u}{u^{2}}$
$\Rightarrow \frac{d f}{f}=f\left[\frac{1}{v} \frac{d v}{v}+\frac{1}{u} \frac{d u}{u}\right]$
$\Rightarrow \frac{d f}{f}=\frac{u v}{u+v}\left[\frac{d v}{v^{2}}+\frac{d u}{u^{2}}\right]$
12. Instantaneous current in a circuit is zero. In which of the options voltage will be maximum.
(a) L
(b) C
(c) R
(d) LC
(1) $A B D$
(2) B
(3) $B C$
(4) D

Ans. (1)
Sol. Phase difference between current and voltage is 90°.
So, possible circuit are (A), (B) and (D).
13. x and y coordinates of a body performing some motion is given as:

$$
\begin{aligned}
& x=3+4 t \\
& y=3 t^{2}+4 t
\end{aligned}
$$

Identify the trajectory of motion.
(1) Parabola
(2) Circular
(3) Straight line
(4) Hyperbola

Ans. (1)
Sol. $x=3+4 t \Rightarrow t=\frac{x-3}{4}$
$y=3 t^{2}+4 t$
equation (1) in (2)
$y=3 \frac{(x-3)^{2}}{16}+4 \frac{(x-3)}{4}$
$\Rightarrow y=\frac{3}{16}\left(x^{2}+9-6 x\right)+(x-3)$
$\Rightarrow y=\frac{1}{16}\left[3 x^{2}+27-18 x+16 x-48\right]$
$y=\frac{1}{16}\left[3 x^{2}-2 x-21\right]$
\Rightarrow it is quadratic in x
\Rightarrow its trajectory is parabola.
14. Choose the correct graph for kinetic energy vs r for an electron revolving around a infinite line of charge.
Ans. Theoretical
Sol. Net force acting towards centre $=\frac{m v^{2}}{r}$
$F=q \times E$
$\mathrm{F}=\mathrm{e} \times 2 \mathrm{k} \frac{\lambda}{\mathrm{r}}$
$\Rightarrow \frac{m v^{2}}{r}=(e)\left(\frac{2 k \lambda}{r}\right)$
$m v^{2}=2 k \lambda \times e$

$\Rightarrow \mathrm{KE}=2 \mathrm{k} \lambda \mathrm{e}$
15. Pressure vs temperature graph is given for gas of different density. Compare ρ_{1}, ρ_{2} and ρ_{3} ?

Ans. $\rho_{1}>\rho_{2}>\rho_{3}$
Sol. $\quad P M=\rho R T$
$\rho=\frac{\mathrm{PM}}{\mathrm{RT}}$
$\rho \propto \frac{P}{T}$
$\rho \propto$ slope
Hence $\rho_{1}>\rho_{2}>\rho_{3}$
16. Work done to expand the bubble of diameter 7 cm and surface tension 40 dyne/cm is 36960 erg. Find the radius of the expanded bubble?
Ans. 14 cm
Sol. Surface energy $=T$ (area)
Bubble has tw surface of interface
$\mathrm{E}_{\mathrm{i}}=2 \mathrm{TS}_{\mathrm{i}}$
$\mathrm{E}_{\mathrm{f}}=2 \mathrm{TS}_{\mathrm{f}}$
\Rightarrow Work done $=\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}$
$\Rightarrow 36960=2\left[\mathrm{TS}_{\mathrm{f}}-\mathrm{TS}_{\mathrm{i}}\right]$
$\Rightarrow 3690=\mathrm{T} \Delta \mathrm{S} \times 2$
$\Rightarrow \Delta \mathrm{S}=\frac{36960}{40 \times 2}$
$\Rightarrow \Delta \mathrm{S}=462 \mathrm{~cm}^{2}$
$\mathrm{S}_{\mathrm{f}}-\mathrm{S}_{\mathrm{i}}=462$
$\Rightarrow 4 \pi r_{f}^{2}=462+4 \pi r_{i}^{2}$
$\Rightarrow r_{f}^{2}=\frac{1}{4 \pi}\left[462+4 \pi \times\left(\frac{7}{2}\right)^{2}\right]$
$r_{f}^{2}=\frac{1}{4 \pi}\left[462+4 \pi \times \frac{49}{4}\right]$
$=\frac{462 \times 7}{4 \times 22}+\frac{49}{4}$
$=r_{f}^{2}=\frac{196}{4}=49$
$r_{f}=7 \mathrm{~cm}$
diameter $=7 \times 2=14 \mathrm{~cm}$
17. De-Broglie wavelength of electron moving from $n=4$ to $n=3$ of a hydrogen is $b(\pi a)$; Where a is bohr radius of the hydrogen atom. Find the value of b.
Ans. $\quad b=2$
Sol. $E=\frac{h c}{\lambda}, m v r=\frac{n h}{2 \pi}$
$\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{2 \pi \mathrm{r}}{\mathrm{n}}$
$\left(\lambda_{1}\right)_{n=4}=\frac{(2 \pi)\left(a_{0} n^{2}\right)}{n}$
$\left(\lambda_{1}\right)_{n=4}=(2 \pi)\left(a_{0} n\right)=8 \pi a_{0}$
$\left(\lambda_{2}\right)_{n=3}=6 \pi \mathrm{a}_{0}$
$\Delta \lambda=\lambda_{1}-\lambda_{2}=8 \pi \mathrm{a}_{0}-6 \pi \mathrm{a}_{0}$
$\Delta \lambda=2 \pi \mathrm{a}_{0}$
Therefore $\mathrm{b}=2$
18. An elastic string under tension of $3 N$ has a length of ' a '. If length is ' b ' then tension is $2 N$. Find tension when length is $(3 a-2 b)$.
Ans. $\frac{5 \mathrm{~F}}{\mathrm{~K}}$
Sol. $F=k x$
$3 \mathrm{~F}=\mathrm{Ka} \Rightarrow \mathrm{a}=\frac{3 \mathrm{~F}}{\mathrm{~K}}$
$2 \mathrm{~F}=\mathrm{Kb} \Rightarrow \mathrm{b}=\frac{2 \mathrm{~F}}{\mathrm{~K}}$

Now, $3 \mathrm{a}-2 \mathrm{~b}=\frac{9 \mathrm{~F}}{\mathrm{~K}}-\frac{4 \mathrm{~F}}{\mathrm{~K}}=\frac{5 \mathrm{~F}}{\mathrm{~K}}$
19. An electron projected inside the solenoid along its axis which carries constant current, then its trajectory would be:
Ans. Straight line
Sol.
$\vec{F}=q(\vec{V} \times \vec{B})$
\vec{B} and \vec{V} are parallel at axis of solenoid so, their cross product will be zero
i.e. $\vec{F}=0$

So, electron will move with constant velocity in a straight line.
20. Current as a function of time is given as $i=6+\sqrt{56} \sin \left(100 t+\frac{\pi}{3}\right)$ A. Find rms value of current.

Ans. 8 A
Sol. $i_{\text {rms }}=\sqrt{6^{2}+\frac{(\sqrt{56})^{2}}{2}}$
$=\sqrt{36+28}$
$=\sqrt{64}$
$=8 \mathrm{~A}$
21. In Celsius the temperature of a body increases by $40^{\circ} \mathrm{C}$. The increasing temperature on Fahrenheit scale is:
Ans. $72^{\circ} \mathrm{F}$
Sol. $\quad T_{F}=\frac{9}{5} T_{c}+32$
$\Delta \mathrm{T}_{\mathrm{f}}=\frac{9}{5} \Delta \mathrm{~T}_{\mathrm{c}}$
$\Rightarrow \Delta \mathrm{T}_{\mathrm{F}}=\frac{9}{5} \times 40$
$\Rightarrow \Delta \mathrm{T}_{\mathrm{F}}=72^{\circ} \mathrm{F}$
22. Force on a particle varies linearly with time(t) (F $\propto t)$. Then select correct acceleration vs time graph.
(1)

(2)

(3)

(4)

Ans. $\Rightarrow \mathrm{a} \propto \mathrm{t}$

Sol. $\quad \mathrm{F}=\mathrm{ma} \Rightarrow \mathrm{a}=\frac{\mathrm{F}}{\mathrm{m}}$
$\Rightarrow \mathrm{a} \propto \mathrm{t}$
23. Which graph correctly represents the photo current (i) vs stopping potential $\left(V_{s}\right)$ for the same frequency but different intensity? (Here $I_{1}>I_{2}$)
(1)

(2)

(3)

(4)

Ans. Theoretical
24. A cubical arrangement of 12 resistors each having resistance R is shown. Find I shown in the given circuit.

Ans. $\frac{V_{0}}{6 R}$
Sol. $\frac{1}{R_{\text {eq }}}=\frac{1}{3 R}+\frac{1}{R}=\frac{4}{3 R}$
$R_{e q}=\frac{3 R}{4}$
$\Rightarrow V_{0}=I R_{\text {eq }}$
$\Rightarrow \mathrm{I}=\frac{4 \mathrm{~V}_{0}}{3 \mathrm{R}}$
So, $I_{1}+I_{2}=1$
\Rightarrow in parallel combination, current is divided into inverse ratio of resistance

$\Rightarrow \frac{I_{1}}{I_{2}}=\frac{I}{3}$
$\Rightarrow I_{1}+3 I_{1}=I \Rightarrow I_{1}=\frac{1}{4} I=\frac{V_{0}}{3 R}$

Now, I_{1} gets divided equally in both branches
$i=\frac{I_{1}}{2}=\frac{V_{0}}{3 R} \times \frac{1}{2} \Rightarrow i=\frac{V_{0}}{6 R}$
25. A wooden block is initially at rest on at rest a smooth surface. Now a horizontal force is applied on the block which increases linearly with time. The acceleration time ($a-\mathrm{t}$) graph for the block would be:
(1)

(3)

(4)

Ans. $F=\frac{k}{m} t$

Sol.

This horizontal force increases linearly with time
$F \propto t$
$F=k t+c \quad(\therefore F=m a)$
$a=\frac{k}{m} t+\frac{c}{m}$
if, $\frac{c}{m}=0$
$\tan \theta=\frac{k}{m}$

then :
$\Rightarrow \mathrm{F}=\mathrm{kt}$
$\Rightarrow \mathrm{a}=\mathrm{F}=\frac{\mathrm{k}}{\mathrm{m}} \mathrm{t}$
26. Find $\mathrm{R}_{\text {eq }}$?

Sol. Below diode is in reverse bias so no current flow through it circuit looks like.
$R_{\text {eq }}=\frac{5}{2}=2.5 \Omega$

CHEMISTRY

1. Which of the following is the correct structure of L-Glucose
(1)

(2)

(3)

(4)

Ans. (1)
Sol. Structure based
2. How many structural isomer are there in $\mathrm{C}_{7} \mathrm{H}_{16}$
(1) 5
(2) 6
(3) 8
(4) 9

Ans. (4)
Sol. 9 structural isomers are possible of $\mathrm{C}_{7} \mathrm{H}_{16}$
3. Which of the following has the maximum dipole moment
(1) NH_{3}
(2) NF_{3}
(3) PCl_{5}
(4) CH_{4}

Ans. (1)
Sol. $\quad \mathrm{NH}_{3}$ has maximum dipole moment
4. Which of the following show only one oxidation state except it's elemental state
(1) Ti
(2) Sc
(3) Co
(4) Ni

Ans. (2)
Sol. Sc show only +3 oxidation state.
5. Number of species having $s p^{3}$ hybridised central atom
$\mathrm{NO}_{3}{ }^{-}$
BCl_{3}
$\mathrm{ClO}_{2}{ }^{-}$
$\mathrm{ClO}_{3}{ }^{-}$

Ans. (02.00)
Sol. Cl atom in ClO_{2}^{-}and ClO_{3}^{-}molecule is sp^{3} hybridised.
6. Number of complexes having even number of unpaired electron in d-orbital.
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
Ans. (02.00)
Sol. All are octahedral complex

Complex
 Number of unpaired electron

$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \quad 1$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \quad 5$
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} 4$
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \quad 2$
7. If emf of hydrogen electrode at $25^{\circ} \mathrm{C}$ is zero pure water then pressure of H_{2} in bar
(1) 10^{-14}
(2) 10^{-7}
(3) 1
(4) 0.5

Ans. (1)
Sol. $\mathrm{H}^{+}+\mathrm{e}^{-} \longrightarrow \frac{1}{2} \mathrm{H}_{2}$
$\varepsilon=0-\frac{0.059}{1} \log \frac{\left(\mathrm{P}_{\mathrm{H}_{2}}\right)^{1 / 2}}{10^{-7}}$
$\frac{\left(\mathrm{P}_{\mathrm{H}_{2}}\right)^{1 / 2}}{10^{-7}}=1$
$\mathrm{P}_{\mathrm{H}_{2}}=10^{-14}$
8. Pressure v / s temperature graph of an ideal gas of equal number of moles of different density is given below:

(1) $\rho_{1}=\rho_{2}=\rho_{3}$
(2) $\rho_{1}>\rho_{2}>\rho_{3}$
(3) $\rho_{1}<\rho_{2}<\rho_{3}$
(4) $\rho_{1}>\rho_{2}<\rho_{3}$

Ans. (2)
Sol. $\quad P=\frac{R \rho}{M} T$
Slope $=\frac{R \rho}{M} \propto \rho$
$\rho_{1}>\rho_{2}>\rho_{3}$
9. Total number of species having single unpaired electron in $\mathrm{NO}, \overline{\mathrm{C}}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}^{2-}, \mathrm{O}_{2}$

Ans. (02.00)
Sol. NO total $\mathrm{e}^{-}=15 \quad$ Unpaired $\mathrm{e}^{-}=1$
CN^{-}total $\mathrm{e}^{-}=14 \quad$ Unpaired $\mathrm{e}^{-}=0$
$\mathrm{O}_{2}^{-} \quad$ total $\mathrm{e}^{-}=17 \quad$ Unpaired $\mathrm{e}^{-}=1$
$\mathrm{O}_{2}^{2-} \quad$ total $\mathrm{e}^{-}=18 \quad$ Unpaired $\mathrm{e}^{-}=0$
$\mathrm{O}_{2} \quad$ total $\mathrm{e}^{-}=16 \quad$ Unpaired $\mathrm{e}^{-}=2$
10. Which of the following is the correct order of $\mathrm{S}^{\text {st }}$ ionisation enthalpy?
(1) $\mathrm{Be}<\mathrm{B}<\mathrm{O}<\mathrm{F}<\mathrm{N}$
(2) $\mathrm{B}<\mathrm{Be}<\mathrm{O}<\mathrm{N}<\mathrm{F}$
(3) $\mathrm{B}<\mathrm{Be}<\mathrm{N}<\mathrm{F}<\mathrm{O}$
(4) $\mathrm{Be}<\mathrm{B}<\mathrm{N}<\mathrm{F}<\mathrm{O}$

Ans. (2)
Sol. $\mathrm{Be}>\mathrm{B}<\mathrm{N}>\mathrm{O}<\mathrm{F}$ $2 s^{2} \quad 2 p^{1} \quad 2 p^{3} \quad 2 p^{4} \quad 2 p^{5} \rightarrow$ electronic configuration
Correct order
$\mathrm{B}<\mathrm{Be}<\mathrm{O}<\mathrm{N}<\mathrm{F}$
11. For any reaction $\mathrm{K}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{3}}$ and $\mathrm{Ea}_{1}=400, \mathrm{Ea}_{2}=300, \mathrm{Ea}_{3}=200$ hence $\mathrm{E}_{\text {overall }}$?
(1) 400
(2) 200
(3) 500
(4) 600

Ans. (3)
Sol. $E_{\text {overall }}=E a_{1}+E a_{2}-E a_{3}$

$$
=400+300-200=500
$$

12. If weight of NaCl in 500 ml aqueous solution is 5.85 gm hence calculate the molarity?

Ans. (00.20)
Sol. $\quad\left[\mathrm{NH}_{3}\right]=\frac{\mathrm{n}}{\mathrm{v}}=\frac{5.85 / 58.5}{0.5}=0.2 \mathrm{M}$
13. $2 \mathrm{M}, 2 \mathrm{ml}$ solution of KMnO_{4} is neutralised with $20 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$. Calculate molarity of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

Ans. (00.50)
Sol. $\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \xrightarrow{\mathrm{H}^{+}} \mathrm{Mn}^{2+}+\mathrm{CO}_{2}$
$n_{f}=5$ $\mathrm{n}_{\mathrm{f}}=2$
$2 \times 5 \times 2=M \times 2 \times 20$
$\mathrm{M}=0.5 \mathrm{M}$
14. De-Broglie wavelength of $e^{-} 4^{\text {th }}$ orbit of $H-A t o m$ is $x \pi r_{0}$, where $r_{0}=$ bohr's $\left.\right|^{\text {st }}$ orbit radius of H-Atom x is \qquad
Ans. (8)
Sol. $\quad 4 \lambda=2 \pi r_{4}$
$\lambda=\frac{2 \pi}{4} r_{0} \times 4^{2}$
$=8 \pi r_{0}$
15. Among which of the following decreasing order of basic strength will be
(i) OH^{-}
(ii) H^{-}
(iii) HCOO^{-}
(iv) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
(v) -OR
(1) II $>$ V $>$ II $>$ I $>$ IV
(2) II $>$ V $>$ I $>$ IV $>$ III
(3) III $>$ VI $>$ I $>$ V $>$ II
(4) $\mathrm{V}>$ I $>\mathrm{VI}>$ II $>$ III

Ans. (2)
Sol. The order of basic strength is as follows :
$\mathrm{H}^{-}>-\mathrm{OR}>\mathrm{OH}^{-}>\mathrm{CH}_{3} \mathrm{COO}^{-}>\mathrm{HCOO}^{-}$
16. What type of electrode is calomel?
(1) redox electrode
(2) metal-metal insoluble salt-its anion
(3) gas-ion
(4) metal-metal ion

Ans. (2)
Sol. metal-metal insoluble salt-its anion.
17. Total number of elements which do not use all valence electrons in bonding as per their group number among them $\underline{O}, \mathrm{~S}, \underline{\mathrm{E}}, \underline{\mathrm{N}}, \mathrm{Al}, \mathrm{C}, \mathrm{Si}$
Ans. (03.00)
Sol. Valance Electron

\underline{O}	6
S	6
F	7
N	5
Al	3
C	4
Si	4

18. Identify the suitable reagents X and Y for given below reaction respectively

(1) dil. $\mathrm{NaOH} / 20^{\circ} ; \mathrm{HBr} / \mathrm{CH}_{3}-\mathrm{COOH}$
(2) dil. $\mathrm{NaOH} / 20^{\circ} ; \mathrm{Br}_{2} / \mathrm{CH}_{3}-\mathrm{COOH}$
(3) Alcoholic $\mathrm{NaOH} / 80^{\circ}$; $\mathrm{HBr} / \mathrm{CH}_{3} \mathrm{COOH}$
(4) Alcoholic $\mathrm{NaOH} / 80^{\circ}$; $\mathrm{HBr} /$ Peroxide

Ans. (3)

Sol.

19. Compare ligand strength of $\mathrm{F}^{-}, \mathrm{OH}^{-}, \mathrm{SCN}^{-}, \mathrm{CO}$
(1) $\mathrm{CO}>\mathrm{OH}^{-}>\mathrm{F}^{-}>\mathrm{SCN}^{-}$
(2) $\mathrm{CO}^{>} \mathrm{F}^{-}>\mathrm{OH}^{-}>\mathrm{SCN}^{-}$
(3) $\mathrm{SCN}^{-}>\mathrm{OH}^{-}>\mathrm{F}^{-}>\mathrm{CO}$
(4) $\mathrm{F}^{-}>\mathrm{CO}^{2} \mathrm{OH}^{-}>\mathrm{SCN}^{-}$

Ans. (1)
Sol. SFL (Strong Field Ligand) $>$ WFL (Weak Field Ligand)
C/N/P
O/Halogens/S
20. Which of the following compound will not give the test of nitrogen by the help of lassaigne's extract?
(1) Hydrazine
(2) Phenyl hydrazine
(3) Glycine
(4) Urea

Ans. (1)
Sol. Hydrazine $\left(\mathrm{NH}_{2} \mathrm{NH}_{2}\right)$ does not contain carbon On fusion with Na metal, it cannot cannot form NaCN . So hydrazine does not show lassaigne's test.
21. $\mathrm{K}_{2} \mathrm{MnO}_{4} \xrightarrow[\text { medium }]{\text { alkaline }} \mathrm{KMnO}_{4}+\mathrm{MnO}_{2}$

Find the sum of spin only magnetic moment of central metal ion in both the products.
(nearest integer)
Ans. (04.00)
Sol. $\quad \stackrel{+7}{\mathrm{KMnO}_{4}} \rightarrow \stackrel{+7}{\mathrm{Mn}} \Rightarrow \mathrm{d}^{0} \quad \mu=0$

$$
\begin{aligned}
\stackrel{+4}{\mathrm{MnO}_{2} \rightarrow \stackrel{+4}{\mathrm{Mn}} \Rightarrow 3 \mathrm{~d}^{3} \quad} \quad \begin{array}{l}
\mu=3.87 \\
\\
\text { nearest integer }=4
\end{array}
\end{aligned}
$$

22. During the test of group $\mathrm{IV} \mathrm{NH}_{4} \mathrm{Cl}$ is added with $\mathrm{NH}_{4} \mathrm{OH}$ why?
(1) to increase the concentration of OH^{-}ion
(2) to decrease the concentration of OH^{-}ion
(3) to increase the concentration of H^{+}ion
(4) to decrease the concentration of H^{+}ion

Ans. (2)
Sol. $\mathrm{NH}_{4} \mathrm{Cl}$ is added with $\mathrm{NH}_{4} \mathrm{OH}$ to decrease the concentration of OH^{-}ion in order to avoid precipitation of further group elements.
23. Statement-I: $\alpha-H$ is responsible for carbonyls giving aldol

Statement-II: Benzaldehyde \& ethanal show cross aldol
(1) Both statements are correct
(2) statements-I is correct and statement-II is incorrect
(3) statements-II is correct and statement-I is incorrect
(4) Both statements are incorrect

Ans. (1)
Sol. Statement-I: Aldol condensation is proceed through α-hydrogen \Rightarrow True
Statement-II: Ethanal have α-hydrogen hence it shows cross aldol \Rightarrow True
24. What is the correct product in below given reaction

(1)

(2)

(3)

(4)

Ans. (1)
Sol. Clemmensen Reduction is used to reduce aldehyde \& ketone into its respective alkane.

