MATHEMATICS

1. a, b and c are in A.P. $a+1, b, c+3$ are G.P $a>10$ and A.M. of a, b, c is 8 , then (G.M. $)^{3}$ of a, b and c.

Ans. 120
Sol. $\quad(a+1)(c+3)=b^{2}$
$(a+1)(c+3)=64, a+c=16$
$a c+3 a+c+3=64$
$a c+2 a+19=64$
$a(16-a)+2 a=45$
$a^{2}-18 a+45=0$
$a=15$
$c=1$
$(\mathrm{GM})^{3}=(\mathrm{abc})=8 \times 15 \times 1=120$
2. Find area bounded by the curves
$y^{2} \leq 2 x$ and $y \geq 4 x-1$
Ans. $9 / 32$
Sol. $\quad A=\int_{-1 / 2}^{1}\left(\left(\frac{y+1}{4}\right)-\frac{y^{2}}{2}\right) d y$
$A=\left[\frac{y^{2}}{8}+\frac{1}{4} y-\frac{y^{3}}{6}\right]_{-\frac{1}{2}}^{1}$
$A=9 / 32$

3. Let $f(x)=\int_{0}^{x} t+\sin \left(1-e^{t}\right) d t, f(0)=0$, then $\lim _{x \rightarrow 0} \frac{f(x)}{x^{3}}$

Ans. $-\frac{1}{6}$
Sol. Let $f(x)=\int_{0}^{x} t+\sin \left(1-e^{t}\right) d t$
$f^{\prime}(x)=x+\sin \left(1-e^{x}\right)$
Now $\lim _{x \rightarrow 0} \frac{f(x)}{x^{3}}$
$\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{x+\sin \left(1-e^{x}\right)}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{1+\cos \left(1-e^{x}\right)\left(-e^{x}\right)}{6 x}=$
$\lim _{x \rightarrow 0} \frac{\sin \left(1-e^{x}\right)\left(-e^{x}\right)\left(-e^{x}\right)+\left(-e^{x}\right) \cos \left(1-e^{x}\right)}{6}=-\frac{1}{6}$.
4. If $f(x)=3 \sqrt{x-2}+\sqrt{4-x}$ maximum value is α and minimum value is β, then $\alpha^{2}+\beta^{2}$

Ans. 38
Sol. $x \in[2,4]$
$f^{\prime}(x)=\frac{3}{2 \sqrt{x-2}}-\frac{1}{2 \sqrt{4-x}}=0$
$9(4-x)=(x-2)$

$10 x=38$
$x=\frac{19}{5}$
Max, $\alpha=3 \sqrt{\frac{9}{5}}+\sqrt{\frac{1}{5}}$
$=\frac{10}{\sqrt{5}}$
$\beta=3 \sqrt{2}$
$\alpha^{2}+\beta^{2}=\frac{100}{5}+18$
$=38$
5. $\sin ^{-1} x+\cos ^{-1} y=\alpha, \alpha \in\left(\frac{-\pi}{2}, \pi\right)$ find value of $x^{2}+y^{2}-2 x y \sin \alpha$

Ans. $\cos ^{2} \alpha$
Sol. $\quad x y+\left(\sqrt{1-x^{2}}\right)\left(\sqrt{1-y^{2}}\right)=\sin \alpha$
$1-x^{2}-y^{2}+x^{2} y^{2}=\sin ^{2} \alpha+x^{2} y^{2}-2 x y \sin \alpha$
$\cos ^{2} \alpha=x^{2}+y^{2}-2 x y \sin \alpha$
6. $\quad F(x)=\left\{\begin{array}{ll}\frac{72^{x}-9^{x}-8^{x}+1}{\sqrt{2}-\sqrt{1+\cos 2 x}}, & x \neq 0 \\ a \ln 2 \cdot \ln 3 & , x=0\end{array}\right.$, if $f(x)$ is continuous at $x=0$, then value of a is

Ans. $\quad \mathrm{a}=6 \sqrt{2}$
Sol. $\lim _{x \rightarrow 0} \frac{\left(8^{x}-1\right)\left(9^{x}-1\right)}{x^{2}} \frac{(\sqrt{2}+\sqrt{1+\cos 2 x})}{(1-\cos 2 x)} \frac{4 x^{2}}{4}$
$\frac{\ln 8 \cdot \ln 9 \cdot 2 \cdot 2 \sqrt{2}}{4}$
$\ln 8 \cdot \ln 9 \cdot \sqrt{2}$
$6 \sqrt{2} \ln 2 \ln 3$
$a=6 \sqrt{2}$
7. Let $f(x)=4 \sqrt{x-2}+\sqrt{4-x}$, find maximum and minimum value of $f(x)$.

Ans. $[\sqrt{2}, \sqrt{34}]$
Sol. Let $x=2+2 \cos ^{2} \theta$

$$
\begin{aligned}
& f(x)=4 \sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta} \\
& =4 \sqrt{2}|\cos \theta|+\sqrt{2}|\sin \theta| \\
& {[\sqrt{2}, \sqrt{34}]}
\end{aligned}
$$

8. $\frac{1 \cdot 2^{2}+2 \cdot 3^{2}+\ldots+100 \cdot(101)^{2}}{1^{2} \cdot 2+2^{2} \cdot 3+\ldots+(100)^{2} \times 101}=\frac{p}{q}$, find $p-q$?

Ans. 4

Sol.

$$
\frac{\sum_{\gamma=1}^{100} \gamma(\gamma+1)^{2}}{\sum_{\gamma=1}^{100} \gamma^{2}(\gamma+1)}=\frac{\sum \gamma(\gamma+1) \cdot(\gamma+2)-\sum \gamma(\gamma+1)}{\sum \gamma(\gamma+1)(\gamma+2)-2 \sum \gamma(\gamma+1)}
$$

$\sqrt{10}$
$=\frac{\frac{309-4}{12}}{\frac{309-8}{12}}=\frac{305}{301}$
$p-q=4$.
9. A relation is $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right)$ is defined as $\left\{(x, y) \in N, x_{1} \leq x_{2}, y_{1} \leq y_{2}\right\}$ then relations is
(1) Reflexive and symmetric
(2) symmetric and transitive
(3) transitive and reflexive
(4) None

Ans. (3)
Sol. for Reflexive $(a, b) R(a, b) \Rightarrow a \leq a, b \leq b \Rightarrow$ Reflexive
for symmetric If $(a, b) R(c, d)$ then $(c, d) R(a, b)$
$\therefore \mathrm{a} \leq \mathrm{c} \& \mathrm{~b} \leq \mathrm{d} \nRightarrow \mathrm{c} \leq \mathrm{a} \& \mathrm{~d} \leq \mathrm{b}$
Not symmetric
for transitive
If $(a, b) R(c, d)$ and $(c, d) R(g, h)$ then $(a, b) R(g, h)$
$a \leq c \& b \leq d$ and
$c \leq g \& d \leq h \Rightarrow a \leq g \& b \leq h$
\therefore transitive
10. If $\int \operatorname{cosec}^{5} \theta d \theta=\alpha(f(x))^{4}+\beta(f(x))^{2}+\gamma \ln |f(x)|+C$, where C is constant of integration, find
$|2 \alpha+\beta+\gamma|$
Ans. 2
Sol. Let $\operatorname{cosec} \theta+\cot \theta=\mathrm{t}$
$\Rightarrow \operatorname{cosec} \theta-\cot \theta=\frac{1}{t}$
$\Rightarrow\left(-\operatorname{cosec} \theta \cot \theta-\operatorname{cosec}^{2} \theta\right) d \theta=d t$
$-\left(\frac{1}{2}\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)\right) \mathrm{td} \theta=\mathrm{dt}$
$-\frac{1}{2}\left(t^{2}+1\right) d \theta=d t$
$d \theta=-\frac{2 d t}{t^{2}+1}$
$\therefore \int t^{5} \frac{(-2)}{t^{2}+1} d t$
$-2 \int\left(\left(t^{3}-t\right)+\frac{t}{t^{2}+1}\right) d t$
$-2\left[\frac{\mathrm{t}^{4}}{4}-\frac{\mathrm{t}^{2}}{2}+\frac{1}{2} \ln \left(\mathrm{t}^{2}+1\right)\right]+\mathrm{c}$
$-2\left[\frac{(\operatorname{cosec} \theta+\cot \theta)^{4}}{4}-\frac{(\operatorname{cosec} \theta+\cot \theta)^{2}}{2}+\frac{1}{2} \ln \left((\operatorname{cosec} \theta+\cot \theta)^{2}+1\right)\right]+c$
So, $\alpha=-\frac{1}{2}, \beta=1, \gamma=-2$
$|2 \alpha+\beta+\gamma|=2$
11. Coefficient of x^{4}, x^{5}, x^{6} are in $A P$ in $(1+x)^{n}$. Find n ?

Ans. 7, 14
Sol. $\quad{ }^{n} C_{4}+{ }^{n} C_{6}=2 \times{ }^{n} C_{5}$

$$
\begin{aligned}
& 1+\frac{(n-4)(n-5)}{30}=\frac{2 \times(n-4)}{5} \\
& 30+n^{2}-9 n+20=12 n-48 \\
& n^{2}-21 n+98=0 \\
& n=7,14
\end{aligned}
$$

12. In a group A there are 4 men and 5 women and in group B there are 5 men and 4 women, if 4 people are selected from each group find number of ways to select 4 men and 4 women.
Ans. 5626
Sol. (5) (4) (4) (5)

A			B		
M	w	m	w		
4	0	0	4	$={ }^{5} \mathrm{C}_{4} \times{ }^{5} \mathrm{C}_{4}=25$	
3	1	1	3	$={ }^{5} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{3}=1600$	
2	2	2	2	$={ }^{5} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{2} \times{ }^{5} \mathrm{C}_{2}=3600$	
1	3	3	1	$={ }^{5} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{1}=400$	
0	4	4	0	$=1$	
				Total $=5626$	

13. A circle $\left(C_{1}\right)$ centred at $(0,0)$ touches hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at vertex. Another circle $\left(C_{2}\right)$ centred at focus of hyperbola touches circle C_{1}. Area of C_{1} and C_{2} are 36π and 4π respectively then find latus rectum of hyperbola.
Ans. $\frac{28}{3}$
Sol.

$a=6$
$a e=8$
$e=\frac{4}{3}$
$b^{2}=36\left[\frac{16}{9}-1\right]=28$
$L \cdot R=\frac{2 \times 28}{6}=\frac{28}{3}$
14. if $\frac{d y}{d x}=\frac{1}{(x+y+2)^{2}}$ and $f(0)=0$. Then $f(x)=\tan ^{-1}\left(\frac{x+y}{x+y+\lambda}\right)$ then find λ.

Ans. $\lambda=5$
Sol.

$$
\begin{array}{ll}
\frac{d t}{d x}-1=\frac{1}{t^{2}} & x+y+2=t \\
\Rightarrow \frac{d t}{d x}=\frac{1}{t^{2}}+1=\frac{t^{2}+1}{t^{2}} & 1+\frac{d y}{d x}=\frac{d t}{d x} \\
\Rightarrow \int \frac{t^{2}+1-1}{1+t^{2}} d t=\int d x \\
\Rightarrow \int 1 d t-\int \frac{1}{1+t^{2}} d t=\int d x \\
\Rightarrow t-\tan ^{-1} t=x+c \\
\Rightarrow(x+y+2)-\tan ^{-1}(x+y+2)=x+c \\
=f(0)=0 & \\
\Rightarrow 2-\tan ^{-1}(2)=c \\
\Rightarrow & (x+y+2)-\tan ^{-1}(x+y+2)=x+2-\tan ^{-1}(2) \\
y=\tan ^{-1}(x+y+2)-\tan ^{-1} 2 \\
y=\tan ^{-1}\left(\frac{x+y}{1+2(x+y+2)}\right)
\end{array}
$$

15. Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $B=I+(\operatorname{adj} A)+\left(\operatorname{adj} A^{2}\right)+\cdots n$ terms then B is

Ans.
Sol. $\quad \operatorname{adj}(A)=\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]$
$A^{2}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right]$
$\operatorname{adj}\left(A^{2}\right)=\left[\begin{array}{cc}1 & -4 \\ 0 & 1\end{array}\right]$
$B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]+\left[\begin{array}{cc}1 & -4 \\ 0 & 1\end{array}\right]+\cdots+\left[\begin{array}{cc}1 & -2 n \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{cc}n+1 & (-2-4-6 \cdots-2 n) \\ 0 & n+1\end{array}\right]$
$=\left[\begin{array}{cc}n+1 & -n(n+1) \\ 0 & (n+1)\end{array}\right]$
$=(n+1)\left[\begin{array}{cc}1 & -n \\ 0 & 1\end{array}\right]$
16. A team plays 10 games. In every game the team wins with probability $\frac{1}{3}$ and losses with probability $\frac{2}{3}$. Let X be the number of wins of this team in these 10 games while Y be the number of losses of this team in these 10 games. The probability that $|x-y| \leq 2$ is

Ans.
Sol. $\quad|x-(10-x)| \leq 2$
$|2 x-10| \leq 2$
$-2 \leq 2 x-10 \leq 2$
$4 \leq x \leq 6$
4 win +6 loss, 5 win +5 loss, 6 win +4 loss
${ }^{10} \mathrm{C}_{4} \cdot\left(\frac{1}{3}\right)^{4} \cdot\left(\frac{2}{3}\right)^{6}+{ }^{10} \mathrm{C}_{5} \cdot\left(\frac{1}{3}\right)^{5} \cdot\left(\frac{2}{3}\right)^{5}+{ }^{10} \mathrm{C}_{6}\left(\frac{1}{3}\right)^{6}\left(\frac{2}{3}\right)^{4}$
$\frac{{ }^{10} \mathrm{C}_{4}(80)+{ }^{10} \mathrm{C}_{5}(32)}{3^{10}}$
17. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{c}=x \hat{i}+2 \hat{j}+3 \hat{k}, x \in \mathbb{R}$. If \vec{d} is an unit vector in the direction of $\vec{b}+\vec{c}$ such that $\vec{a} \cdot \vec{d}=1$, then $(\vec{a} \times \vec{b}) \cdot \vec{c}$ is

Ans. 11
Sol. $\quad \vec{d}=\lambda((2+x) \hat{\imath}+(4+2) \hat{j}+(-5+3) \hat{k})$
$\vec{d}=\lambda((2+x) \hat{\imath}+6 \hat{j}-2 \hat{k})$
$\vec{a} \cdot \vec{d}=\lambda(\hat{i}+\hat{j}+\hat{k}) \cdot((2+x) \hat{i}+6 \hat{j}-2 \hat{k})=1$
$\Rightarrow \lambda(2+x+6-2)=1$
$\lambda(6+x)=1$ and $|\vec{d}|=1$
$\lambda \sqrt{(2+x)^{2}+36+4}=1$
$\lambda^{2}\left((2+x)^{2}+40\right)=1$
$\therefore \mathrm{x}=1$
$\lambda=\frac{1}{7}$
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 4 & -5 \\ 1 & 2 & 3\end{array}\right|=11$
18. $y^{2}=12 x$ has a chord $P Q$ with midpoint $(4,1)$ then equation of $P Q$ passes through
(1) $(-4,0)$
(2) $(-4,1)$
(3) $(4,8)$
(4) None of these

Ans. (1)
Sol. $y \times 1=6(x+4)$
$y=6 x+24$
19. $\left(x^{2}+4\right)^{2} d y+\left(2 x^{3} y+8 x y-2\right) d x=0$ if $y=y(x)$; If $y(0)=0$ then $y(2)$ is equal to-

Ans. $\frac{1}{16}$
Sol. $\quad\left(x^{2}+4\right)^{2} d y+y \cdot 2 x\left(x^{2}+4\right) d x=2 d x$
$y \cdot\left(x^{2}+4\right)^{2}=2 x+c$
$c=0$
$y \cdot(4+4)^{2}=2 \times 2$
$y=\frac{4}{64}=\frac{1}{16}$
20. $L_{1} \cdot \frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\lambda$
$L_{2}: \frac{x-3}{1}=\frac{y+2}{-2}=\frac{z-9}{2}=\mu$
Two lines L_{1} and L_{2} are given and they intersect at point P. A and B are two points, $A(8,7,-1), B(5,1,17)$. Find minimum distance of point P from the line joining A and B

Ans. 7
Sol. Point of intersection is $P \equiv(1,2,3)$
Equation of $A B: \frac{x-8}{3}=\frac{y-7}{6}=\frac{z+1}{-18}$
Perpendicular distance of $P(1,2,3)$ form $A B$ is 7 and foot of \perp^{r} is $(7,5,5)$
21. Centre of a circle is $(0,0)$ and radius is $\sqrt{10} \cdot x+y=2$ is a chord of this circle. Another chord of slope -1 has length 2 . Find least possible distance between $x+y=2$ and this chord.

Ans. -
Sol. $\quad x+y=c$
$\left|\frac{c}{\sqrt{2}}\right|=2$
$c= \pm 2 \sqrt{2}$
$x+y-2 \sqrt{2}=0$
$x+y+2 \sqrt{2}=0$
$x+y-2=0$
For least distance take equation (1) \& (3)
least distance $=\left|\frac{2 \sqrt{2}-2}{\sqrt{2}}\right|$

PHYSICS

1. Position of a particle performing SHM is given by $x=100 \sin (\omega t+\pi / 3)$. Find its initial velocity if time period is 3.14 sec .
Ans. 100
Sol. $\quad x=100 \sin (\omega t+\pi / 3)$
$v=\frac{d x}{d t}=[100 \cos (\omega t+\pi / 3) \times \omega$
(v) $)_{\mathrm{t}=0}=100 \omega \cos (\pi / 3)$
$=100 \times \omega / 2$
$=50 \omega$
$=50 \times \frac{2 \pi}{\mathrm{~T}}=\frac{100 \pi}{3.14}$
2. Find the value of friction coefficient between block and the inclined for body to just start sliding.

Ans. $\mu=1$
Sol. $\mu=\tan 45^{\circ}$
$\mu=1$
3. Find potential difference between points P and Q in the given figure. Magnetic field is perpendicular to the plane of rotation.

Ans. $\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{Q}}=0$
Sol. $\quad \mathrm{P}$ and Q will be at same potential
So $V_{P}-V_{Q}=0$
4. In a YDSE setup, slit width are d and $4 d$, find the ratio of maximum intensity to minimum intensity.
Ans. 9:1
Sol. $\frac{I_{\max }}{I_{\text {min }}}=\left(\frac{\sqrt{4}+\sqrt{1}}{\sqrt{4}-\sqrt{1}}\right)^{2}=\left(\frac{3}{1}\right)^{2}=\frac{9}{1}$
5. A bus moving with $72 \mathrm{~km} / \mathrm{hr}$ stops in 4 seconds due to uniform retardation. Find the value of stopping distance.
Ans. $\quad 40 \mathrm{~m}$
Sol. $\quad S=\left(\frac{u+v}{2}\right) t$
$\mathrm{u}=72 \times \frac{5}{18} \mathrm{~m} / \mathrm{s} \quad \& v=0$
Therefore, $s=\left(\frac{20+0}{2}\right) \times 4$
$=40 \mathrm{~m}$
6. Find the total flux through the cube if charge Q is present at the centre of its one face.

Ans. $\frac{\mathrm{q}_{\text {in }}}{2 \varepsilon_{0}}$
Sol. Let's imagine a cube adjacent to our given cube, then
Charge enclosed in our cube $=\frac{9}{2}$
By Gauss law,
Total flux $=\frac{\mathrm{q}_{\text {in }}}{2 \varepsilon_{0}}$
7. Two wires A and B of same length are made of same material. Radius of B is double of radius of A. Find resistance of B if resistance of A is 2Ω.

Ans. 8Ω
Sol. $\quad R=\frac{\rho l}{A}$
$R \propto \frac{1}{r^{2}}$
$\frac{R_{B}}{R_{A}}=\left(\frac{r_{B}}{r_{A}}\right)^{2}$
$\mathrm{R}_{\mathrm{B}}=2 \times 4=8 \Omega$
8. A particle of mass 2 kg attached to a massless string is released from the given position. Find its velocity when it reaches point B. Length of the string is 14 m .

Ans. $\quad 4 \sqrt{30} \mathrm{~m} / \mathrm{s}$
Sol. $\quad m g(R+R \cos 45)=\frac{1}{2} m v^{2}$
$2 g R\left(1+\frac{1}{\sqrt{2}}\right)=v^{2}$
$v^{2}=2 \times 10 \times 14 \times\left(1+\frac{1}{\sqrt{2}}\right)$
$=280+\frac{280}{1.4}$
$=280+200$
$\mathrm{v}^{2}=480$
$v=4 \sqrt{30} \mathrm{~m} / \mathrm{s}$
9. If power consumed by an electrical instrument is 500 watts at 200 volts, then find power consumed at 100 volts.

Ans. 125
Sol. $P=\frac{v^{2}}{R} \Rightarrow P \propto v^{2}$
$\frac{P_{2}}{P_{1}}=\left(\frac{V_{2}}{V_{1}}\right)^{2}$
$\frac{P_{2}}{P_{1}}=\left(\frac{100}{200}\right)^{2}$
$P_{2}=\frac{P_{1}}{4} \Rightarrow P_{2}=\frac{500}{4}=125$
10. Find the ratio of magnitude of magnetic field at point A and B if the wires are infinitely long.

Ans. $5: 7$
Sol. $\quad \overrightarrow{B_{A}}=\frac{\mu_{0} i}{2 \pi r}+\frac{\mu_{0}(2 i)}{2 \pi(3 r)}=\frac{\mu_{0}}{2 \pi r}\left[1+\frac{2}{3}\right]=\frac{5}{3} \frac{\mu_{0}}{(2 \pi r)}$
$\overrightarrow{B_{C}}=\frac{\mu_{0}(2 i)}{2 \pi r}+\frac{\mu_{0} i}{2 \pi(3 r)}=\frac{\mu_{0}}{2 \pi r}\left[2+\frac{1}{3}\right]=\frac{7}{3} \frac{\mu_{0}}{(2 \pi r)}$

$$
\frac{\overrightarrow{\mathrm{B}_{\mathrm{A}}}}{\overrightarrow{\mathrm{~B}_{\mathrm{C}}}}=\frac{5 \times 3}{3 \times 7}=\frac{5}{7}
$$

11. A particle travels on a circle of radius $2 m$ from P to S. Find the displacement of the particle

Ans. $\quad 2.82 \mathrm{~m}$
Sol. $|P S|=\sqrt{r^{2}+r^{2}}=\sqrt{2 r}=\sqrt{2} \times 2 m=2.82 m$
12. Determine the weight of a man standing at a height of $2 R$ (where $R=$ radius of earth) from the earth surface. Given that mass of the man $=90 \mathrm{~kg}$.
Ans. $10 \mathrm{~kg}-\mathrm{wt}$
Sol.

$g=\frac{g_{s}}{\left(1+\frac{2 R}{R}\right)^{2}}=\frac{g_{s}}{9}$
Then weight of man at height $2 R$

$$
w=\frac{W_{s}}{9}
$$

$=10 \mathrm{~kg}-\mathrm{wt}$
13. 3 Kg mass is displaced by 2 cm towards 2 kg mass. How much should 2 kg mass be displaced towards 3 kg such that centre of mass remains at the same point.
Ans. 3 cm
Sol. As COM remain stationary
$\overrightarrow{d_{\text {com }}}=0=\frac{3 \times(2)+2(-x)}{5}$
$x=3 \mathrm{~cm}$
14. Identify the logic gate.

Ans. OR gate
Sol. $\overline{\overline{\mathrm{A}} \cdot \bar{B}}=\overline{\bar{A}}+\overline{\bar{B}}=A+B$
OR gate.
15. In an thermodynamic process, the value of γ is $\frac{3}{2}$. If 1 mol of gas is taken from volume 20 litre 60 litre, then Find the value of work done in the process. Initial pressure is 5 atm .
Ans. $600(1-\sqrt{3})$ atm litre
Sol. For adiabatic process
$\mathrm{Pv}^{\gamma}=$ cons.
$\Rightarrow \quad 5(60)^{3 / 2}=P_{f}(20)^{3 / 2}$
$\Rightarrow \quad \mathrm{P}_{\mathrm{f}}=\left(\frac{60}{20}\right)^{3 / 2}$
$=5(3)^{3 / 2}$
$\Rightarrow \quad P_{f}=15 \sqrt{3} \mathrm{~atm}$
Wad. $=\frac{P_{1} V_{1}-P_{2} V_{2}}{\gamma-1}$
$=\frac{5 \times 60-15 \sqrt{3}(20)}{\frac{3}{2}-1}$
$=\frac{20 \times 5[3-3 \sqrt{3}]}{1 / 2}$ litre atm
$=200 \times 3(1-\sqrt{3})$ atm litre
$=600(1-\sqrt{3})$ atm litre.
16. Find order of wavelength of X-rays, gamma rays, microwaves, and ultraviolet rays.

Ans. $\quad \lambda_{y}<\lambda_{x \text { ray }}<\lambda_{u . V}$ ray $<\lambda_{\text {microwave }}$
Sol. Factual
17. Match the following
(A)

(i) Capacitive
(B)

(ii) Inductive
(C)

(iii) Resistive
(D)

Ans. $\quad \mathrm{A} \rightarrow$ (i), $\mathrm{B} \rightarrow$ (ii), $\mathrm{C} \rightarrow$ (iii), $\mathrm{D} \rightarrow$ (ii)
Sol. (A) Current leads the voltage \Rightarrow capacitive
(B) Current leads the voltage \Rightarrow inductive
(C) Current \& voltage are in same phase \Rightarrow Resistive
(D) Current lags the voltage \Rightarrow Inductive
18. Find out rotational and transnational degree of freedom of CH_{4} gas molecule.

Ans. $\quad 3+3=6$
Sol. Transnational degree of freedom $=3$
Rotational degree of freedom = 3
19. A spring mass system has a total energy E and if mass is doubled then what is total energy?

Ans. E
Sol. $E=\frac{1}{2} m \omega^{2} A^{2}$
$E=\frac{1}{2} K A^{2}$
Total energy $=\mathrm{E}$
20. Find relation between T (time period of satellite), R (radius of satellite), G (gravitational const), M (mass of satellite).
Ans. $\quad T^{2} \propto \frac{R^{3}}{M G}$

Sol. $\quad T \propto R^{x} G^{y} M^{2}$
$[T]=[L]^{x}\left[m^{-1} L^{3} T^{-2}\right]^{y}[M]^{2}$
$0=x+3 y$
$0=-y+z$
$1=-2 y$
$y=-\frac{1}{2}$
$z=-\frac{1}{2}$
$x=\frac{3}{2}$
$T \propto \frac{R^{\frac{3}{2}}}{G^{\frac{1}{2}} M^{\frac{1}{2}}}$
$T^{2} \propto \frac{R^{3}}{M G}$
21. In a bohr's atom an electron revolves in a orbit whose orbital number $(\mathrm{n}=4)$. Find out the value of angular momentum ?
Ans. $2 h / \pi$
Sol. $L=m v r==\frac{n h}{2 \pi}=\frac{2 h}{\pi}$
22. Assertion : The number of photons increases with increase in frequency of light.

Reason : The max. kinetic energy increases with increase in frequency of incident light.
Ans. FT
Sol. Assertion is false but reason is true
23. Magnetic moment is $0.5 \mathrm{~A} / \mathrm{m}^{2}$, strength of magnetic field $B=0.8 \times 10^{-16} \mathrm{~T}$, then find the work done for brining the magnet from most stable to least stable position.
Ans. $8 \times 10^{-17} \mathrm{~J}$
Sol. $W_{\text {ext }}=-\Delta U$
$\Rightarrow-(\mathrm{M} . \mathrm{B})_{\mathrm{I}}-(-\mathrm{M} . \mathrm{B})_{\mathrm{F}}$
$\Rightarrow \mathrm{MB}\left[\cos \theta_{2}-\cos \theta_{1}\right]$
$\Rightarrow 40 \times 10^{-18} \times[2]$
$\Rightarrow 8 \times 10^{-17} \mathrm{~J}$
24. Statement 1 : Contact angle in tube depends on both liquid and tube material.

Statement 2 : Height of the capillary is independent of its radius of curvature.
Ans. TF
Sol. Contact angle depends on the values of cohesive as well as adhesive forces, so it depends on both liquid and tube material.
$h=\frac{2 T \cos \theta}{\rho r g}$

CHEMISTRY

1. Arrange the following compounds in increasing order of their stability :-
(a)

(b)

(c)

(d)

(1) $(\mathrm{a})>(\mathrm{c})>(\mathrm{b})>(\mathrm{d})$
(2) (d) $>$ (b) $>$ (c) $>$ (a)
(3) (a) $>$ (c) $>$ (b) $>$ (d)
(4) (a) $>$ (b) $>$ (d) $>$ (c)

Ans. (1)
Sol. As we know compound (a) is aromatic and the compound (d) is antiaromatic Hence, compound (a) is more stable and compound (d) is least.
In compound (b) and (c) more the sp^{3} carbon, more is the +1 effect.

$$
C^{-} \text {stability } \propto \frac{1}{+l \text { effect }} \propto-l \text { effect }
$$

Hence, (c) is more stable then (b)
Therefore, order will be $-(\mathrm{a})>(\mathrm{c})>(\mathrm{b})>(\mathrm{d})$
2. IUPAC name of catechol is :
(1) Benzene, 1,2-diol
(2) Benzene, 1,3-diol
(3) Benzene, 1,4-diol
(4) 3-Hydroxyphenol

Ans. (1)
Sol. Theory based
3. Major product ' A ' is

(1)

(2)

(3)

(4)

Ans. (1)

Sol.

Strong base with high temperature tends to E_{2} reaction.
4. Find the atomic number of element having 3 unpaired e^{-}and belongs to transition series with +2 oxidation state
(1) 22
(2) 23
(3) 24
(4) 25

Ans. (2)
Sol. ${ }_{23} V=[\mathrm{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{2}$
5. Correct order of ionisation enthalpy for

Li, Na, Cl, F
(1) $\mathrm{Cl}>\mathrm{F}>\mathrm{Li}>\mathrm{Na}$
(2) $\mathrm{F}>\mathrm{Cl}>\mathrm{Li}>\mathrm{Na}$
(3) $\mathrm{Li}>\mathrm{Na}>\mathrm{F}>\mathrm{Cl}$
(4) $\mathrm{Li}>\mathrm{Na}>\mathrm{Cl}>\mathrm{F}$

Ans. (2)
Sol. I.E. \propto Zeff $\propto \frac{1}{\text { no. of shell }}$
6. Which of the following molecule having pyramidal shape
(1) SO_{4}^{2-}
(2) SO_{3}^{2-}
(3) $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$
(4) $\mathrm{S}_{2} \mathrm{O}_{7}^{2-}$

Ans. (2)

Sol.

7. Consider the following statements:

Statement I: The number of emitted photoelectrons Increases with increase in frequency of incident light.
Statement II: Kinetic energy of emitted photoelectrons increases with increase in frequency of incident light
(1) Statement I is true but statement II is false
(2) Statement I is false but statement II is true
(3) Both Statement I and statement II are true
(4) Both Statement I and statement II are false

Ans. (2)
Sol. Theory based, Photoelectric effect
8. Which of the following salt form yellowish green gas when treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and MnO_{2}
(1) NaCl
(2) $\mathrm{Na}_{2} \mathrm{~S}$
(3) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
(4) None of these

Ans. (1)
Sol. Cl^{-}oxidises to give $\mathrm{Cl}_{2}(\mathrm{~g})$ of yellowish green colour.
9. Find the value of $x+y$ in given complex $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{x}(\mathrm{CN})_{y}\right]^{-1}$
Ans. (6)
Sol. Co-ordination number of Fe^{+3} is 6 .
10. 1 mole of ideal monoatomic gas compressed adiabatically from volume 2 V to 1 V .

If initially temperature of gas was T. Then the magnitude of work done in this process is
Ans. $\quad w=\frac{3}{2} R T\left(2^{\frac{2}{3}}-1\right)$
Sol. $\quad w=\left(\frac{n R \Delta T}{\gamma-1}\right)$
We known,
$\mathrm{T} \mathrm{V}^{\gamma-1}=$ cons.
$\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1}$
$\Rightarrow \quad \mathrm{T}(2 \mathrm{~V})^{\gamma-1}=\mathrm{T}_{2}(\mathrm{~V})^{\gamma-1}$
$\Rightarrow \quad \mathrm{T}_{2}=2^{\gamma-1} \mathrm{~T}$
$\gamma=\frac{5}{3}$
$w=\left(\frac{n R \Delta T}{\gamma-1}\right)$
$w=\left(\frac{r\left(T_{2}-T_{1}\right)}{\gamma-1}\right)$
$\mathrm{w}=\frac{\left(2^{\gamma-1}-\mathrm{T}\right)}{\gamma-1} \mathrm{R}$
$\mathrm{w}=\frac{3}{2} \mathrm{RT}\left(2^{\frac{2}{3}}-1\right)$
11. Find the sum of σ and π bonds present in 2-oxo-hex-4-yne-oicacid

Ans. (18)

Sol.
 $[4 \pi+14 \sigma=18]$
12. What is angular momentum of $4^{\text {th }}$ orbit ?
(1) $\frac{2 h}{\pi}$
(2) $\frac{h}{\pi}$
(3) $\frac{h}{2 \pi}$
(4) $\frac{3 h}{2 \pi}$

Ans. (1)
Sol. $\mathrm{mvr}=\frac{\mathrm{nh}}{2 \pi}=\frac{4 \mathrm{~h}}{2 \pi}=\frac{2 \mathrm{~h}}{\pi}$
13. Phthalimide $\xrightarrow[\text { (2)Benzyl chloride }]{\text { (1) } \mathrm{KOH}} P$

Number of π bonds in product ' P '
Ans. (8)

Sol.

No. of Z bond $=8$
14. Calculate the degree of freedom for translatory and rotatory motion of CH_{4} molecule
(1) 2,3
(2) 1,2
(3) 3,3
(4) 1,3

Ans. (3)
Sol. CH_{4} Non-Linear Polyatomic molecule

DOF $=6$	
Translatory	
motion	Rotatory
motion	

15. Commonly used Adsorbents in adsorption chromatography.

Sol. Silica gel, Alumina
16. Arrange the following in ascending order of wavelength.
(a) Gamma rays
(b) X-ray
(c) Infrared ray
(d) U.V ray
(1) $c>d>b>a$
(2) $d>c>b>a$
(3) $c>d>a>b$
(4) $c>b>d>a$

Ans. (1)
Sol. Infra-red ray $>$ U.V ray $>$ X-ray $>$ Gamma rays
17. How many orbitals have following set of quantum number $n=4, m_{l}=0$
(1) 3
(2) 5
(3) 2
(4) 4

Ans. (4)
Sol. $\quad n=4 \quad l=0,1,2,3$
$l=0 \quad m_{\ell}=0$
$l=1 \quad m_{\ell}=1,0,1$
$l=2 \quad m_{\ell}=-2,-1,0,1,2$
$l=3 \quad m_{\ell}=-3,-1,0,1,2,3$
18.

(A)

X \& y are :-

Sol.

Answer is :- Propanol and propan-2-ol
19. Calculate heat for Isothermal process if expansion takes place from 20 L to 60 L against 5 atm external pressure
(1) 200 L -atm
(2) 400 L -atm
(3) $300 \mathrm{~L}-\mathrm{atm}$
(4) $500 \mathrm{~L}-\mathrm{atm}$

Ans. (1)
Sol. We know according to FLOT,
$\Delta U=q+w$
Isothermal $\Delta T=0$

$$
\begin{gathered}
\Delta U=0 \\
q=-w \\
\mathrm{w}=-\mathrm{P}_{\mathrm{ext}}\left[\mathrm{~V}_{2}-\mathrm{V}_{1}\right] \\
=-5[60-20] \\
\mathrm{w}=-200 \mathrm{~L}-\mathrm{atm} \\
\mathrm{q}=-\mathrm{w}=-[-200]=200 \mathrm{~L}-\mathrm{atm}
\end{gathered}
$$

20. Find the total number of molecules which have non-zero dipole moment among the following
$\mathrm{NH}_{3}, \mathrm{BCl}_{3}, \mathrm{BeH}_{2}, \mathrm{CCl}_{4}, \mathrm{XeF}_{4}$
Ans. (1)
Sol. $\quad \mathrm{NH}_{3}$ is polar among these.
21. List-
(P) α-Glucose and α-Fructose
(Q) α-Glucose and α-Mannose
(R) α-Glucose and β-Glucose
(S) α-Glucose and Ribose
(1) $\mathrm{P} \rightarrow \mathrm{B} ; \mathrm{Q} \rightarrow \mathrm{C} ; \mathrm{R} \rightarrow \mathrm{D} ; \mathrm{S} \rightarrow \mathrm{A}$
(2) $\mathrm{P} \rightarrow \mathrm{A} ; \mathrm{Q} \rightarrow \mathrm{C} ; \mathrm{R} \rightarrow \mathrm{D} ; \mathrm{S} \rightarrow \mathrm{B}$
(3) $\mathrm{P} \rightarrow \mathrm{A} ; \mathrm{Q} \rightarrow \mathrm{C} ; \mathrm{R} \rightarrow \mathrm{B} ; \mathrm{S} \rightarrow \mathrm{D}$
(4) $P \rightarrow C ; Q \rightarrow A ; R \rightarrow D ; S \rightarrow B$

Ans. (2)
Sol. Based on biomolecules theory.
22. For the given chemical reaction :-
$\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{SO}_{3} \quad \mathrm{~K}_{1}=4.9 \times 10^{-4}$
Find $K_{2}=$? for chemical reaction given below
$2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$
(1) 4×10^{6}
(2) 5×10^{7}
(3) 5×10^{8}
(4) 5×10^{5}

Ans. (1)
Sol. $\mathrm{K}_{2}=\left(\frac{1}{\mathrm{~K}_{1}}\right)^{2}$
$=\left(\frac{1}{4.9 \times 10^{-4}}\right)^{2}$
$=(2000)^{2}$
$\mathrm{K}_{2}=4 \times 10^{6}$
23. Total number of unpaired e^{-}at central metal ion in $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Ans. (0)
Sol. For Co^{+3} ion $\mathrm{H}_{2} \mathrm{O}$ act as SFL , then unpaired e^{-}will be zero
24. Arrange the following in increasing order of their first ionisation enthalpy: $\mathrm{Al}, \mathrm{Ga}, \mathrm{In}, \mathrm{TI}, \mathrm{B}$
(1) $\mathrm{Tl}<\mathrm{In}<\mathrm{Ga}<\mathrm{Al}<\mathrm{B}$
(2) In $<\mathrm{Al}<\mathrm{Ga}<\mathrm{Tl}<\mathrm{B}$
(3) $\mathrm{In}<\mathrm{Ga}<\mathrm{Al}<\mathrm{B}<\mathrm{TI}$
(4) $\mathrm{B}<\mathrm{Al}<\mathrm{Ga}<\mathrm{In}<\mathrm{TI}$

Ans. (2)
Sol. Theory based, Periodic table
25. Which of the following represent correct unit of slope of graph between molar conductivity $(\Delta \mathrm{m})$ and (concen) ${ }^{\mathrm{x}}$
(1) $\mathrm{Scm}^{1 / 2} \mathrm{~mol}^{-1 / 2}$
(2) $\mathrm{S} \mathrm{cm}^{3 / 2} \mathrm{~mol}^{-2}$
(3) $\mathrm{Scm}^{7 / 2} \mathrm{~mol}^{-1 / 2}$
(4) $\mathrm{Scm}^{5 / 2} \mathrm{~mol}^{-3 / 2}$

Ans. (3)
Sol. $\quad \wedge_{m}=\wedge_{m}-A \sqrt{C}$
Slope $=\frac{\wedge_{\mathrm{m}}}{\sqrt{\mathrm{C}}}$
26. Which of the following statement is incorrect?
(1) In homogeneous mixture composition is uniform
(2) Compounds are formed when atoms of different element
combine together in any ratio
(3) Atoms of same element have identical atomic mass a properties
(4) In heterogeneous mixture composition is not uniform

Ans. (2)
Sol. Fundamentals of mole concept.

