Å

- a, b and c are in A.P. a + 1, b, c + 3 are G.P a > 10 and A.M. of a, b, c is 8, then $(G.M.)^3$ of a, b 1. and c.
- 120 Ans.
- $(a + 1)(c + 3) = b^2$ Sol. (a + 1)(c + 3) = 64, a + c = 16ac + 3a + c + 3 = 64ac + 2a + 19 = 64a(16-a) + 2a = 45 $a^2 - 18a + 45 = 0$ a = 15 c = 1 $(GM)^3 = (abc) = 8 \times 15 \times 1 = 120$

2. Find area bounded by the curves

$$y^2 \le 2x$$
 and $y \ge 4x - 1$

 $A = \int_{-1/2}^{1} \left(\left(\frac{y+1}{4} \right) - \frac{y^2}{2} \right) dy$ Sol. $A = \left[\frac{y^2}{8} + \frac{1}{4}y - \frac{y^3}{6}\right]_{-\frac{1}{2}}^{1}$ A = 9/32

3. Let
$$f(x) = \int_{0}^{x} t + \sin(1 - e^{t}) dt, f(0) = 0$$
, then $\lim_{x \to 0} \frac{f(x)}{x^{3}}$

Ans.
$$-\frac{1}{6}$$
.
Sol. Let $f(x) = \int_0^x t + \sin(1 - e^t) dt$
 $f'(x) = x + \sin(1 - e^x)$
Now $\lim_{x \to 0} \frac{f(x)}{x^3}$
 $\lim_{x \to 0} \frac{f'(x)}{3x^2} = \lim_{x \to 0} \frac{x + \sin(1 - e^x)}{3x^2} = \lim_{x \to 0} \frac{1 + \cos(1 - e^x)(-e^x)}{6x} = \lim_{x \to 0} \frac{\sin(1 - e^x)(-e^x)(-e^x) + (-e^x)\cos(1 - e^x)}{6} = -\frac{1}{6}$

JEE-Main-04-04-2024 Evening Shift

If $f(x) = 3\sqrt{x-2} + \sqrt{4-x}$ maximum value is α and minimum value is β , then $\alpha^2 + \beta^2$ 4. Ans. 38 Sol. x∈[2,4] $f'(x) = \frac{3}{2\sqrt{x-2}} - \frac{1}{2\sqrt{4-x}} = 0$ + – – – | 19/5 9(4 - x) = (x - 2)10x = 38 $x = \frac{19}{5}$ $Max, \alpha = 3\sqrt{\frac{9}{5}} + \sqrt{\frac{1}{5}}$ $=\frac{10}{\sqrt{5}}$ $\beta = 3\sqrt{2}$ $\alpha^2+\beta^2=\frac{100}{5}+18$ = 38 $\sin^{-1}x + \cos^{-1}y = \alpha, \ \alpha \in \left(\frac{-\pi}{2}, \pi\right)$ find value of $x^2 + y^2 - 2xy \sin \alpha$ 5. Ans. $\cos^2 \alpha$ $xy + \left(\sqrt{1-x^2}\right)\left(\sqrt{1-y^2}\right) = \sin \alpha$ Sol. $1 - x^2 - y^2 + x^2 y^2 = \sin^2 \alpha + x^2 y^2 - 2xy \sin \alpha$ $\cos^2 \alpha = x^2 + y^2 - 2xy \sin \alpha$ $F(x) = \begin{cases} \frac{72^x - 9^x - 8^x + 1}{\sqrt{2} - \sqrt{1 + \cos 2x}}, & x \neq 0\\ a \ln 2 \cdot \ln 3, & x = 0 \end{cases}$, if f(x) is continuous at x = 0, then value of a is 6. $a = 6\sqrt{2}$ Ans. $\lim_{x \to 0} \frac{(8^{x} - 1)(9^{x} - 1)}{x^{2}} \frac{(\sqrt{2} + \sqrt{1 + \cos 2x})}{(1 - \cos 2x)} \frac{4x^{2}}{4}$ Sol. $\frac{\ln 8 \cdot \ln 9 \cdot 2 \cdot 2\sqrt{2}}{4}$ $\ln 8 \cdot \ln 9 \cdot \sqrt{2}$ $6\sqrt{2}\ln 2\ln 3$ $a = 6\sqrt{2}$

JEE-Main-04-04-2024 Evening Shift

Let $f(x) = 4\sqrt{x-2} + \sqrt{4-x}$, find maximum and minimum value of f(x). 7. **Ans.** $[\sqrt{2}, \sqrt{34}]$ Let $x = 2 + 2\cos^2 \theta$ Sol. $f(x) = 4\sqrt{2\cos^2\theta} + \sqrt{2\sin^2\theta}$ $=4\sqrt{2}|\cos\theta|+\sqrt{2}|\sin\theta|$ $[\sqrt{2}, \sqrt{34}]$ $\frac{1 \cdot 2^2 + 2 \cdot 3^2 + \ldots + 100 \cdot (101)^2}{1^2 \cdot 2 + 2^2 \cdot 3 + \ldots + (100)^2 \times 101} = \frac{p}{q}, \text{ find } p - q?$ 8. Ans. $\sum_{\gamma=1}^{100} \gamma(\gamma+1)^{2} = \frac{\sum \gamma(\gamma+1) \cdot (\gamma+2) - \sum \gamma(\gamma+1)}{\sum \gamma(\gamma+1)(\gamma+2) - 2\sum \gamma(\gamma+1)} = \frac{\sum \gamma(\gamma+1) \cdot (\gamma+2) - \sum \gamma(\gamma+1)}{\sum \gamma(\gamma+1)(\gamma+2) - 2\sum \gamma(\gamma+1)}$ Sol. $\sqrt{10}$ 309 - 4 $=\frac{12}{200}=\frac{305}{5}$ 309 – 8 301 12 p - q = 4. 9. A relation is $(x_1, y_1)R(x_2, y_2)$ is defined as $\{(x, y) \in N, x_1 \le x_2, y_1 \le y_2\}$ then relations is (1) Reflexive and symmetric (2) symmetric and transitive (3) transitive and reflexive (4) None Ans. (3) for Reflexive $(a,b)R(a,b) \Rightarrow a \le a, b \le b \Rightarrow$ Reflexive Sol. for symmetric If (a,b)R(c,d) then (c,d)R(a,b) $\therefore a \le c \& b \le d \not\implies c \le a \& d \le b$ Not symmetric for transitive If (a,b)R(c,d) and (c,d)R(g,h) then (a,b)R(g,h) $a \le c \& b \le d$ and $c \leq g \& d \leq h \Longrightarrow a \leq g \& b \leq h$: transitive If $\int \csc^5\theta d\theta = \alpha(f(x))^4 + \beta(f(x))^2 + \gamma \ln |f(x)| + C$, where C is constant of integration, find 10. $|2\alpha + \beta + \gamma|$ 2 Ans. Sol. Let $cosec\theta + cot\theta = t$ $\Rightarrow \operatorname{cosec}\theta - \operatorname{cot}\theta = \frac{1}{t}$

JEE-Main-04-04-2024 Evening Shift

 $\Rightarrow \left(-\operatorname{cosec}\theta \cot\theta - \operatorname{cosec}^2\theta\right) d\theta = dt$ $-\left(\frac{1}{2}\left(t+\frac{1}{t}\right)\right)td\theta = dt$ $-\frac{1}{2}(t^2+1)d\theta = dt$ $d\theta = -\frac{2dt}{t^2 + 1}$ $\therefore \int t^5 \frac{(-2)}{t^2 + 1} dt$ $-2\int \left(\left(t^3 - t\right) + \frac{t}{t^2 + 1} \right) dt$ $-2\left[\frac{t^{4}}{4}-\frac{t^{2}}{2}+\frac{1}{2}\ln(t^{2}+1)\right]+c$ $-2\left[\frac{(\csc e c \theta + \cot \theta)^4}{4} - \frac{(\csc e + \cot \theta)^2}{2} + \frac{1}{2}ln((\csc e \theta + \cot \theta)^2 + 1)\right] + c$ So, $\alpha = -\frac{1}{2}$, $\beta = 1$, $\gamma = -2$ $|2\alpha + \beta + \gamma| = 2$

Coefficient of x^4, x^5, x^6 are in AP in $(1+x)^n$. Find n? 11.

48

Ans. 7,14

Sol.
$${}^{n}C_{4} + {}^{n}C_{6} = 2 \times {}^{n}C_{5}$$

 $1 + \frac{(n-4)(n-5)}{30} = \frac{2 \times (n-4)}{5}$
 $30 + n^{2} - 9n + 20 = 12n - 48$
 $n^{2} - 21n + 98 = 0$
 $n = 7, 14$

12. In a group A there are 4 men and 5 women and in group B there are 5 men and 4 women, If 4 people are selected from each group find number of ways to select 4 men and 4 women. 5626 Ans.

Sol. (5)(4) (4) (5) А В Μ m W w $= {}^{5}C_{4} \times {}^{5}C_{4} = 25$ 0 4 4 0 1 3 = ${}^{5}C_{3} \times {}^{4}C_{1} \times {}^{4}C_{1} \times {}^{5}C_{3} = 1600$ 3 1 2 2 3 1 2 2 $= {}^{5}C_{2} \times {}^{4}C_{2} \times {}^{4}C_{2} \times {}^{5}C_{2} = 3600$ 1 = ${}^{5}C_{1} \times {}^{4}C_{3} \times {}^{4}C_{3} \times {}^{5}C_{1} = 400$ 1 3 0 4 4 0 = 1 Total = 5626

Å

A circle (C_1) centred at (0, 0) touches hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at vertex. Another circle (C_2) 13. centred at focus of hyperbola touches circle C₁. Area of C₁ and C₂ are 36π and 4π respectively then find latus rectum of hyperbola.

Ans.
$$\frac{28}{3}$$

Sol.

6

Å

 $\lambda(6+x) = 1$ and $|\vec{d}| = 1$ $\lambda \sqrt{(2+x)^2 + 36 + 4} = 1$ $\lambda^{2}((2+x)^{2}+40)=1$ ∴ x = 1 $\lambda = \frac{1}{7}$ $\begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & -5 \\ 1 & 2 & 3 \end{vmatrix} = 11$ y^2 = 12x has a chord PQ with midpoint (4, 1) then equation of PQ passes through 18. (2) (-4, 1) (3) (4, 8) (1)(-4, 0)(4) None of these (1) Ans. $y \times 1 = 6(x + 4)$ Sol. y = 6x + 2419. $(x^{2} + 4)^{2}dy + (2x^{3}y + 8xy - 2)dx = 0$ if y = y(x); If y(0) = 0 then y(2) is equal to-Ans. 16 $(x^{2}+4)^{2} dy + y \cdot 2x(x^{2}+4) dx = 2dx$ Sol. $y \cdot \left(x^2 + 4\right)^2 = 2x + c$ c = 0 $\mathbf{y} \cdot (\mathbf{4} + \mathbf{4})^2 = \mathbf{2} \times \mathbf{2}$ $y = \frac{4}{64} = \frac{1}{16}$ $L_1 \cdot \frac{x}{1} = \frac{y}{2} = \frac{z}{3} = \lambda$ 20. $L_2: \frac{x-3}{1} = \frac{y+2}{-2} = \frac{z-9}{2} = \mu$ Two lines L_1 and L_2 are given and they intersect at point P. A and B are two points, A(8, 7, -1), B(5, 1, 17). Find minimum distance of point P from the line joining A and B 7 Ans. Point of intersection is $P \equiv (1, 2, 3)$ Sol. Equation of AB: $\frac{x-8}{3} = \frac{y-7}{6} = \frac{z+1}{-18}$ Perpendicular distance of P(1,2,3) form AB is 7 and foot of \perp^r is (7,5,5) Centre of a circle is (0, 0) and radius is $\sqrt{10}$. x + y = 2 is a chord of this circle. Another chord 21. of slope -1 has length 2. Find least possible distance between x + y = 2 and this chord.

JEE-Main-04-04-2024 Evening Shift www.esaral.com

Ans. -Sol. x + y = c $\left|\frac{c}{\sqrt{2}}\right| = 2$ $c = \pm 2\sqrt{2}$ $x + y - 2\sqrt{2} = 0$...(1) $x + y + 2\sqrt{2} = 0$...(2) x + y - 2 = 0...(3) For least distance take equation (1) & (3) least distance = $\frac{2\sqrt{2}-2}{\sqrt{2}}$ √10

JEE-Main-04-04-2024 Evening Shift

Å

PHYSICS

1. Position of a particle performing SHM is given by $x = 100\sin(\omega t + \pi/3)$. Find its initial velocity if time period is 3.14 sec.

Ans. 100

Sol.

x = 100 sin (ω t + $\pi/3$) v = $\frac{dx}{dt}$ = [100 cos (ω t+ $\pi/3$) × ω (v)_{t=0} = 100 ω cos ($\pi/3$) = 100 × $\omega/2$ = 50 ω = 50 × $\frac{2\pi}{T}$ = $\frac{100\pi}{3.14}$

2. Find the value of friction coefficient between block and the inclined for body to just start sliding.

Ans. $\mu = 1$ **Sol.** $\mu = \tan 45^{\circ}$ $\mu = 1$

3. Find potential difference between points P and Q in the given figure. Magnetic field is perpendicular to the plane of rotation.

- Ans. $V_P V_Q = 0$ Sol. P and Q will be at same potential So $V_P - V_Q = 0$
- **4.** In a YDSE setup, slit width are d and 4d, find the ratio of maximum intensity to minimum intensity.

Ans. 9:1

- **Sol.** $\frac{I_{max}}{I_{min}} = \left(\frac{\sqrt{4} + \sqrt{1}}{\sqrt{4} \sqrt{1}}\right)^2 = \left(\frac{3}{1}\right)^2 = \frac{9}{1}$
- **5.** A bus moving with 72 km/hr stops in 4 seconds due to uniform retardation. Find the value of stopping distance.

Ans. 40 m

Sol.
$$S = \left(\frac{u+v}{2}\right)t$$

 $u = 72 \times \frac{5}{18}m / s$ & $v = 0$
Therefore, $s = \left(\frac{20+0}{2}\right) \times 4$

= 40m

JEE-Main-04-04-2024 Evening Shift

Å

6. Find the total flux through the cube if charge Q is present at the centre of its one face.

Ans. $\frac{q_{in}}{2\varepsilon_0}$

Sol. Let's imagine a cube adjacent to our given cube, then

Charge enclosed in our cube = $\frac{q}{2}$

By Gauss law,

Total flux =
$$\frac{q_{in}}{2\varepsilon_0}$$

7. Two wires A and B of same length are made of same material. Radius of B is double of radius of A. Find resistance of B if resistance of A is 2 Ω .

Ans. 8Ω

Sol.
$$R = \frac{\rho t}{A}$$
$$R \propto \frac{1}{r^{2}}$$
$$\frac{R_{B}}{R_{A}} = \left(\frac{r_{B}}{r_{A}}\right)^{2}$$
$$R_{B} = 2 \times 4 = 8\Omega$$

8. A particle of mass 2 kg attached to a massless string is released from the given position.Find its velocity when it reaches point B. Length of the string is 14 m.

Ans. $4\sqrt{30}$ m / s

Sol. mg (R + R cos 45) =
$$\frac{1}{2}$$
 m v²
2gR $\left(1 + \frac{1}{\sqrt{2}}\right) = v^{2}$

$$v^{2} = 2 \times 10 \times 14 \times \left(1 + \frac{1}{\sqrt{2}}\right)$$
$$= 280 + \frac{280}{1.4}$$
$$= 280 + 200$$
$$v^{2} = 480$$
$$v = 4\sqrt{30} \text{m/s}$$

9. If power consumed by an electrical instrument is 500 watts at 200 volts, then find power consumed at 100 volts.

Ans. 125

Sol.
$$P = \frac{v^2}{R} \implies P \propto v^2$$
$$\frac{P_2}{P_1} = \left(\frac{V_2}{V_1}\right)^2$$
$$\frac{P_2}{P_1} = \left(\frac{100}{200}\right)^2$$
$$P_2 = \frac{P_1}{4} \implies P_2 = \frac{500}{4} = 125$$

10. Find the ratio of magnitude of magnetic field at point A and B if the wires are infinitely long.

Ans. 5:7

Sol.

$$\begin{array}{l} \overrightarrow{B}_{A} = \frac{\mu_{0}i}{2\pi r} + \frac{\mu_{0}(2i)}{2\pi(3r)} = \frac{\mu_{0}}{2\pi r} \left[1 + \frac{2}{3} \right] = \frac{5}{3} \frac{\mu_{0}}{(2\pi r)} \\ \overrightarrow{B}_{C} = \frac{\mu_{0}(2i)}{2\pi r} + \frac{\mu_{0}i}{2\pi(3r)} = \frac{\mu_{0}}{2\pi r} \left[2 + \frac{1}{3} \right] = \frac{7}{3} \frac{\mu_{0}}{(2\pi r)} \\ \overrightarrow{B}_{A} = \frac{5 \times 3}{3 \times 7} = \frac{5}{7}
\end{array}$$

11. A particle travels on a circle of radius 2m from P to S. Find the displacement of the particle

Ans. 2.82m

Sol.
$$|PS| = \sqrt{r^2 + r^2} = \sqrt{2r} = \sqrt{2} \times 2m = 2.82m$$

- **12.** Determine the weight of a man standing at a height of 2R (where R = radius of earth) from the earth surface. Given that mass of the man = 90kg.
- Ans. 10 kg-wt

Sol.

$$g = \frac{g_s}{\left(1 + \frac{2R}{R}\right)^2} = \frac{g_s}{9}$$

g_s

、2

g = —

Then weight of man at height 2R

$$W = \frac{W_s}{9}$$

JEE-Main-04-04-2024 Evening Shift

Å

= 10 kg-wt

- **13.** 3 Kg mass is displaced by 2cm towards 2kg mass. How much should 2kg mass be displaced towards 3kg such that centre of mass remains at the same point.
- Ans. 3cm
- Sol. As COM remain stationary

$$\overrightarrow{d_{com}} = 0 = \frac{3 \times (2) + 2(-x)}{5}$$
$$x = 3cm$$

14. Identify the logic gate.

Ans. OR gate

Sol. $\overline{\overline{A}}.\overline{\overline{B}} = \overline{\overline{A}} + \overline{\overline{B}} = A + B$ OR gate.

- **15.** In an thermodynamic process, the value of γ is $\frac{3}{2}$. If 1 mol of gas is taken from volume 20 litre 60 litre, then Find the value of work done in the process. Initial pressure is 5 atm.
- **Ans.** $600(1-\sqrt{3})$ atm litre
- Sol. For adiabatic process

Pv^{$$\gamma$$} = cons.

$$\Rightarrow 5(60)^{3/2} = P_f (20)^{3/2}$$

$$\Rightarrow P_f = \left(\frac{60}{20}\right)^{3/2}$$

$$= 5(3)^{3/2}$$

$$\Rightarrow P_f = 15\sqrt{3} \text{ atm}$$
Wad. = $\frac{P_1V_1 - P_2V_2}{\gamma - 1}$

$$= \frac{5 \times 60 - 15\sqrt{3}(20)}{\frac{3}{2} - 1}$$

$$= \frac{20 \times 5\left[3 - 3\sqrt{3}\right]}{1/2} \text{ litre atm}$$

$$= 200 \times 3(1 - \sqrt{3}) \text{ atm litre}$$

$$= 600(1 - \sqrt{3}) \text{ atm litre}.$$

JEE-Main-04-04-2024 Evening Shift

Ans. $A \rightarrow (i), B \rightarrow (ii), C \rightarrow (iii), D \rightarrow (ii)$

- **Sol.** (A) Current leads the voltage \Rightarrow capacitive
 - (B) Current leads the voltage \Rightarrow inductive
 - (C) Current & voltage are in same phase \Rightarrow Resistive
 - (D) Current lags the voltage \Rightarrow Inductive
- **18.** Find out rotational and transnational degree of freedom of CH₄ gas molecule.
- **Ans.** 3 + 3 = 6
- **Sol.** Transnational degree of freedom = 3 Rotational degree of freedom = 3
- 19. A spring mass system has a total energy E and if mass is doubled then what is total energy?Ans. E
- Sol. $E = \frac{1}{2}m\omega^2 A^2$ $E = \frac{1}{2}KA^2$

Total energy = E

20. Find relation between T(time period of satellite), R(radius of satellite), G(gravitational const), M(mass of satellite).

Ans.
$$T^2 \propto \frac{R^3}{MG}$$

JEE-Main-04-04-2024 Evening Shift

Sol. $T \propto R^{x}G^{y}M^{z}$ $[T] = [L]^{x} [m^{-1}L^{3}T^{-2}]^{y} [M]^{z}$ 0 = x + 3y0 = -y + z1 = -2y $y = -\frac{1}{2}$ $z = -\frac{1}{2}$ $x = \frac{3}{2}$ $T \propto \frac{R^{\frac{3}{2}}}{G^{\frac{1}{2}}M^{\frac{1}{2}}}$ $T^2 \propto \frac{R^3}{MG}$

- 21. In a bohr's atom an electron revolves in a orbit whose orbital number (n = 4). Find out the value of angular momentum ?
- 2h/π Ans.

 $L = mvr = -\frac{nh}{2\pi} = \frac{2h}{\pi}$ Sol.

- Assertion : The number of photons increases with increase in frequency of light. 22. Reason : The max. kinetic energy increases with increase in frequency of incident light.
- FT Ans.

Sol.

- Assertion is false but reason is true Sol.
- 23. Magnetic moment is 0.5 A/m², strength of magnetic field B = 0.8 \times 10⁻¹⁶ T, then find the work done for brining the magnet from most stable to least stable position.

8 × 10⁻¹⁷ J Ans.

> $W_{ext} = -\Delta U$ $\Rightarrow -(M.B)_{I} - (-M.B)_{F}$ \Rightarrow MB[cos θ_2 - cos θ_1] \Rightarrow 40 × 10⁻¹⁸ × [2] \Rightarrow 8 × 10⁻¹⁷ J

24. Statement 1: Contact angle in tube depends on both liquid and tube material. Statement 2 : Height of the capillary is independent of its radius of curvature.

Ans. TF

Sol. Contact angle depends on the values of cohesive as well as adhesive forces, so it depends on both liquid and tube material.

$$h = \frac{2T\cos\theta}{\rho rg}$$

Å

CHEMISTRY

4.	Find the atomic number of element having 3 unpaired e ⁻ and belongs to transition series with +2 oxidation state			
_	(1) 22	(2) 23	(3) 24	(4) 25
Ans. Sol	(2) $(2) = [\Lambda r] 3 d^3 4 c^2$			
501.	23 V - [A1]50 +3			
5.	Correct order of ionisation enthalpy for			
	Li, Na, Cl, F			
	(1) Cl > F > Li > Na		(2) F > Cl > Li > Na	
Anc	(3) $L_{I} > Na > F > Cl$		(4) Li > Na > Cl > F	
Ans.	1			
Sol.	I.E. ∞ Zeff ∞ no. of shell			
6.	Which of the following molecule having pyramidal shape			
	(1) SO ₄ ²⁻	(2) SO_3^{2-}	(3) $S_2O_3^{2-}$	(4) S ₂ O ₇ ²⁻
Ans.	(2)			
Sol	$SO^{2-} \rightarrow S^{S}$			
301.				
7.	Consider the following statements:			
	Statement I: The number of emitted photoelectrons Increases with increase in frequency of			
	incident light.			
	Statement II: Kinetic energy of emitted photoelectrons increases with increase in frequency			
	of incident light			
	(1) Statement I is true but statement II is false			
	(2) Statement I is false but statement II is true			
	(4) Both Statement I and statement II are false			
Ans.	(2)			
Sol.	Theory based, Photoelectric effect			
8.	Which of the following salt form yellowish green gas when treated with conc. H_2SO_4 and			
	MnO ₂			
	(1) NaCl	(2) Na ₂ S	(3) Na ₂ SO ₄	(4) None of these
Ans.	(1)			
Sol.	Cl^- oxidises to give Cl_2 (g) of yellowish green colour.			
9.	Find the value of x + y in given complex			
	[Fe(NH ₃) _x (CN) _y] ⁻¹			
Ans.	(6)			
Sol.	Co-ordination number of Fe ⁺³ is 6.			
JEE-Main-04-04-2024 Evening Shift www.esaral.com				

~

2

(4) $\frac{3h}{2\pi}$

A

1 mole of ideal monoatomic gas compressed adiabatically from volume 2V to 1V.
 If initially temperature of gas was T. Then the magnitude of work done in this process is

Ans.
$$w = \frac{3}{2} RT(2^{\frac{3}{2}} - 1)$$

Sol.
$$w = \left(\frac{nR\Delta T}{\gamma - 1}\right)$$

We known,
 $T \lor \gamma^{\gamma - 1} = cons.$
 $T_1 \lor \gamma^{\gamma - 1} = T_2 \lor 2_2^{\gamma - 1}$
 $\Rightarrow T(2 \lor)^{\gamma - 1} = T_2 (\lor)^{\gamma - 1}$
 $\Rightarrow T_2 = 2^{\gamma - 1} T$
 $\gamma = \frac{5}{3}$
 $w = \left(\frac{nR\Delta T}{\gamma - 1}\right)$
 $w = \left(\frac{r(T_2 - T_1)}{\gamma - 1}\right)$
 $w = \frac{(2^{\gamma - 1} - T)}{\gamma - 1}R$
 $w = \frac{3}{2}RT(2^{\frac{2}{3}} - 1)$
11. Find the sum of σ and π bonds present in 2-oxo-hex-4-yne-oicacid
Ans. (18)
 $\parallel \quad \parallel$

 $OH - C - C + CH_2 - C \equiv C - CH_3 [4\pi + 14\sigma = 18]$ Sol. 12. What is angular momentum of 4th orbit ? (1) <u>2h</u> (3) $\frac{h}{2\pi}$ (2) $\frac{h}{\pi}$ π Ans. (1) $mvr = \frac{nh}{2\pi} = \frac{4h}{2\pi} = \frac{2h}{\pi}$ Sol. Phthalimide $\xrightarrow{(1)KOH}$ P 13. Number of π bonds in product 'P' (8)Ans. -CH Sol. No. of Z bond = 8JEE-Main-04-04-2024 Evening Shift www.esaral.com

Å

Å

19. Calculate heat for Isothermal process if expansion takes place from 20 L to 60 L against 5 atm external pressure (1) 200 L-atm (2) 400 L-atm (3) 300 L-atm (4) 500 L-atm Ans. (1) Sol. We know according to FLOT, $\Delta U = q + w$ Isothermal $\Delta T = 0$ $\Delta U = 0$ q = -w $w = - P_{ext} [V_2 - V_1]$ = - 5 [60-20] w = - 200 L- atm q = - w = - [-200] = 200 L - atm 20. Find the total number of molecules which have non-zero dipole moment among the following NH₃, BCl₃, BeH₂, CCl₄, XeF₄ Ans. (1) Sol. NH_3 is polar among these. 21. List-I List-II (P) α -Glucose and α -Fructose (1) Functional group isomer (Q) α -Glucose and α -Mannose (2) Homologous (R) α -Glucose and β -Glucose (3) Epimers (S) α -Glucose and Ribose (4) Anomers (1) $P \rightarrow B$; $Q \rightarrow C$; $R \rightarrow D$; $S \rightarrow A$ (2) $P \rightarrow A$; $Q \rightarrow C$; $R \rightarrow D$; $S \rightarrow B$ (3) $P \rightarrow A$; $Q \rightarrow C$; $R \rightarrow B$; $S \rightarrow D$ (4) $P \rightarrow C$; $Q \rightarrow A$; $R \rightarrow D$; $S \rightarrow B$ Ans. (2) Sol. Based on biomolecules theory. 22. For the given chemical reaction :- $SO_2 + \frac{1}{2}O_2 \rightleftharpoons SO_3$ $K_1 = 4.9 \times 10^{-4}$ Find $K_2 = ?$ for chemical reaction given below $2SO_3 \rightleftharpoons 2SO_2 + O_2$ (1) 4×10^{6} (2) 5 × 10⁷ $(3) 5 \times 10^8$ $(4) 5 \times 10^{5}$ (1) Ans. $K_2 = \left(\frac{1}{K_1}\right)^2$ Sol. $=\left(\frac{1}{4.9 \times 10^{-4}}\right)^2$ $= (2000)^2$ $K_2 = 4 \times 10^6$ JEE-Main-04-04-2024 Evening Shift www.esaral.com

