JEE(Main)-2024 | 05 April 2024 (Shift-2 Evening) | Question Paper with Solutions | Memory Based

MATHEMATICS

1. Find the coefficient of x^{0} in expansion of $\left(\frac{3^{1 / 5}}{x}+\frac{x}{5^{1 / 3}}\right)^{12}$

Ans. $12 c_{6} \frac{3^{6 / 5}}{5^{2}}$
Sol. $\quad T_{r+1}={ }^{12} C_{r}\left(\frac{3^{1 / 5}}{x}\right)^{12-r}\left(\frac{x}{5^{1 / 3}}\right)^{r}$
$=x^{-12+r} x^{r}=x^{0}$
$2 r-12=0$
$r=6$
coeff of $x^{0} \Rightarrow 12 c_{6} \frac{3^{6 / 5}}{5^{2}}$
2. $|x| x|+2| x-5 \mid+2 x+3=0$.

Ans. $x=-\sqrt{13}$
Sol. (I) $5 \geq x \geq 0$.
$x^{2}+2(-x+5)+2 x+3=0$
$x^{2}-2 x+10+2 x+3=0$
$x^{2}+13=0$
No solution.
(II) $x \geq 5$
$x^{2}+2 x-10+2 x+3=0$.
$x^{2}+4 x-7=0$.
$x=\frac{-4 \pm \sqrt{16+28}}{2}$
$x=\frac{-4 \pm \sqrt{44}}{2}$
$x \neq \frac{\sqrt{44}-4}{2}$.
$x \neq \frac{-\sqrt{44}-4}{2}$,
(III) $x \leq 0$.
$-x^{2}-2 x+10+2 x+3=0$.
$-x^{2}+13=0$.
$x^{2}=13$
$x= \pm \sqrt{13}$
$x \neq \sqrt{13}$
Only one solution $x=-\sqrt{13}$
3. Minimum value of k so that $4^{x+1}+4^{1-x}, \frac{k}{2}, 16^{x}+16^{-x}$ are in A.P.

Ans. 10
Sol. $k=4^{x} \cdot 4+\frac{4}{4^{x}}+16^{x}+\frac{1}{16^{x}}$

$$
\mathrm{k}_{\min }=4+4+2=10
$$

4. Find word formed by all letters of the word "HBBOJ" whose Rank is $50^{\text {th }}$ when letters are arranged in dictionary.
Ans. OBHOJ
Sol. B B H J O
$\left.\begin{array}{lll}\underline{B}---- & \rightarrow 24 \\ \underline{H} & ---- & \rightarrow 12 \\ J & ---- & \rightarrow 12\end{array}\right\} 48$
OBHJO $\rightarrow 49^{\text {th }}$
OBHOJ $\rightarrow 50^{\text {th }}$
Ans. OBHOJ
5. Let (α, β, γ) be the image of $(3,5,8)$ in the line $\frac{x-1}{2}=\frac{y-3}{3}=\frac{z-2}{4}$ then value of $3 \alpha+4 \beta+5 \gamma$ is.
Ans. (_)
Sol. Let $m(2 \lambda+1,3 \lambda+3,4 \lambda+2)$
$\overrightarrow{P M}=(2 \lambda-2) \hat{i}+(3 \lambda-2) \hat{j}+(4 \lambda-6) \hat{k}$
Now. $\overrightarrow{\mathrm{PM}} \cdot(2 \hat{i}+3 \hat{i}+4 \hat{k})=0$
$2(2 \lambda-2)+3(3 \lambda+3)+4(4 \lambda+2)=0$
$29 \lambda+13=0 \Rightarrow\left(\lambda=\frac{-13}{29}\right)$
$m\left(\frac{3}{29}, 2, \frac{6}{29}\right)$

	$\begin{array}{l}P(3,5,8) \\ M\end{array}$
$\begin{array}{l}\left(\frac{3}{29}, 2, \frac{6}{29}\right) \\ Q\left(\frac{-81}{29},-1, \frac{-220}{29}\right)\end{array}$	

6. Let $f(x)=|x-1|$ and $g(x)=\left\{\begin{array}{ll}e^{x}, & x \geq 0 \\ 3 x, & x<0\end{array}\right.$ then $f(g(x))$ is one one or Many one

Ans. Many One

Sol. $\quad f(g(x))=|g(x)-1|= \begin{cases}\left|e^{x}-1\right|, & x \geq 0 \\ |3 x-1|, & x<0\end{cases}$

7. Find area enclosed by $y=x|x|$ and $y=x-|x|$.

Ans. 4/3
Sol. $\quad x<0$

$$
x>0
$$

$y_{1}=-x^{2}$
$y=x^{2}$
$y_{2}=2 x$

Auc $=\left|\int_{-2}^{0}\left(-x^{2}-2 x\right) d x\right|$
Auc $\left.=\left|\left(-\frac{x^{3}}{3}-x^{2}\right)\right|_{-2}^{0} \right\rvert\,$
Auc $=4 / 3$ Ans
8. Find minimum value of expression $(x-7)^{2}+\left(\sqrt{-x^{2}+8 x-7}-4\right)^{2}$ where $x \in[1,7]$

Ans. 4
Sol. $\quad(x-7)^{2}+\left(\sqrt{9-(x-4)^{2}}-4\right)^{2}$
Square of distance between
$\left(x, \sqrt{9-(x-4)^{2}}\right) \&(7,4)$

Minimum distance $=P C-r=5-3=2$
Ans 4
9. Find number of points of discontinuity of $f(x)=2 x^{2}+\left[x^{2}\right]-[x]$ where $x \in[-1,2]$

Ans. 4
Sol. Points to be check on $x=-1,0,1, \sqrt{2}, \sqrt{3}, 2$
Discontinues at $x=0,-1, \sqrt{2}, \sqrt{3}$
Continuous at $x=1 \& 2$
10. $\quad C_{1}:(x-1)^{2}+(y-1)^{2}=1$
C_{2} : centre $(-1,0), R=2$
Common chord passes through y-axis at P. Square of distance P from centre of C_{1}.
Ans. 2
Sol. common chord is $C_{1}-C_{2}=0$
$\Rightarrow \quad 4 x+2 y-1=3$
$4 x+2 y=4$
intersect y-axis at $P(0,2)$
$\mathrm{PC}_{1}=\sqrt{2}$
Ans $=2$
11. Let $S=\left\{2,2^{2}, 2^{3}, 2^{4}, \ldots \ldots .2^{9}\right\}$. A, B, C are subsets of S having equal elements. Given that $A \cap B=B \cap C=C \cap A=\phi$. Find total number of ways A, B, C can chosen if $A \cup B \cup C=S$.

Ans. $\frac{9!}{(3!)^{3}}$
Sol. $\left(\frac{9!}{(3!)^{3}} \times \frac{1}{(3!)}\right) \times 3!$
$=\frac{9!}{(3!)^{3}}$
12. Let set $A=\{1,2,3,4,5,6\}$ and $a x^{2}+b x+c=0$ be a quadratic equation where ($a, b, c \in A$) has real roots, then if the probability that one root is greater than other is P then find the value of 43 P .

Ans. 38
Sol. For real roots.
$b^{2} \geq 4 a c$
(i) $b=6$
$a c \leq 9$
$a=1 \quad c=1 . . .6$
$a=2 c=1,2,3,4$
$a=3 c=1,2,3$
$a=4 c=1,2$
$a=5 \mathrm{c}=1$
$a=6 \mathrm{c}=1$
(II) $\mathrm{b}=5 \quad \mathrm{ac} \leq \frac{25}{4}$
$a=1 \quad c=1 . . .6$
$a=2 c=1,2,3$
$a=3 c=1,2$
$a=4 \mathrm{c}=1$
$a=5 c=1$
$a=6 c=1$
14 cases
(III) $\mathrm{b}=4 \quad \mathrm{ac} \leq 4$
$a=1 \quad c=1,2,3,4$
$a=2 c=1,2$
$a=3 c=1$
$a=4 \mathrm{c}=1$
(IV) $b=3 \quad a c \leq \frac{9}{4}$
$\left.\begin{array}{l}a=1 \mathrm{c}=1,2 \\ \mathrm{a}=2 \mathrm{c}=1\end{array}\right\} 3$ cases
(V) $b=2 \quad a c \leq 1$
$\mathrm{ac}=1\} 1$ case
Total cases
$\Rightarrow 17+8+14+3+1$
$=43$
If equal roots $b^{2}=4 a c$
$b=2 a c=1 \quad 1$ case
$b=4 a c=4 \quad 3$ cases $\} 5$ cases
$b=6 a c=9 \quad 1$ case
Probability $=1-\frac{5}{43}$
$\Rightarrow \frac{38}{43}$
Ans. 38
13. Find the number of solutions of the equation:
$5|x+3|+7|x-7|=5$.
Ans. 0
Sol. $f(x)=5|x+3|+7|x-7|$
For: $-3<x<7$
$f(x)=-2 x+64$
For ; $x \geq 7$
$f(x)=12 x-34$
For ; $x \leq-3$
$f(x)=-12 x+34$.

No solution.
14. Find D.E. of circle whose centre lies on $y=x$ and pass through origin.

Ans. $y^{\prime}\left(x^{2}+y^{2}-2 x y-2 y^{2}\right)=2 x^{2}+2 x y-x^{2}-y^{2}$
Sol. $\quad x^{2}+y^{2}+\alpha x+\alpha y=0$
$2 \mathrm{x}+2 \mathrm{yy}^{\prime}+\alpha+\alpha \mathrm{y}^{\prime}=0$
$\alpha=-\frac{2\left(x+y y^{\prime}\right)}{\left(1+y^{\prime}\right)}$
$x^{2}+y^{2}-\frac{2\left(x+y y^{\prime}\right) x}{1+y^{\prime}}-2 \frac{\left(x+y y^{\prime}\right)}{1+y^{\prime}} y=0$
$\left(1+y^{\prime}\right)\left(x^{2}+y^{2}\right)-2 x^{2}-2 x y y^{\prime}-2 x y-2 y^{2} y^{\prime}=0$
$y^{\prime}\left(x^{2}+y^{2}-2 x y-2 y^{2}\right)=2 x^{2}+2 x y-x^{2}-y^{2}$
15. A square $A B C D$ of side " 4 " is given and a square $A E F G$ of side " 2 " is given where F is mid-point of $A B$. Find radius of circle which touches $B C, C D$ and passer through F.
Ans. radius $=(4-2 \sqrt{2})$
Sol. $\quad(\alpha-2)^{2}+(\alpha-2)^{2}$
$=(4-\alpha)^{2}$
$2\left[\alpha^{2}+4-4 \alpha\right]=\alpha^{2}+16-8 \alpha$
$\alpha^{2}=8$
radius $=(4-2 \sqrt{2})$

16. Area of region enclosed by
$S_{1}:|z| \leq 5, S_{2}: \operatorname{Re}(z) \geq 0 \& \operatorname{Im}\left(\frac{z+1-\sqrt{3} i}{1-\sqrt{3} i}\right) \geq 0$
Ans. $\frac{25 \pi}{3}$
Sol. $\quad \frac{z+1-\sqrt{3} i}{1-\sqrt{3} i}=\frac{((x+1)+i(4-\sqrt{3}))(1+\sqrt{3} i)}{4}$
$\Rightarrow \sqrt{3}(x+1)+4-\sqrt{3} \geq 0$
$\sqrt{3} x+y \geq 0$

$$
\begin{aligned}
& \text { Area }=\frac{\pi(5)^{2}}{2}-\frac{1}{2} \cdot 25 \cdot \frac{\pi}{3} \\
& =\frac{25 \pi}{2}\left(1-\frac{1}{3}\right)=\frac{25 \pi}{3}
\end{aligned}
$$

17. Let $\frac{d y}{d x}+\frac{2 x y}{\left(1+x^{2}\right)^{2}}=x \cdot e^{-1 / 1+x^{2}}, y(0)=\frac{1}{e}$ and $y(x)=g(x) \cdot e^{-1 / 1+x^{2}}$, then area bounded by $y=g(x)$ and $y-x=4$ is

Ans. $\frac{14 \sqrt{7}}{3}$
Sol. $\quad I \cdot F .=e^{-\int \frac{2 x}{\left(1+x^{2}\right)^{2}} \mathrm{dx}}=e^{1 / 1+x^{2}}$

$$
\begin{aligned}
& \therefore \quad y \cdot e^{\frac{1}{1+x^{2}}}=\int x d x+c \\
& y \cdot e^{\frac{1}{1+x^{2}}}=\frac{x^{2}}{2}+c \\
& y=\left(\frac{x^{2}}{2}+c\right) e^{-1 / 1+x^{2}}
\end{aligned}
$$

$$
\text { put } x=0, \frac{1}{e}=c e^{-1} \Rightarrow c=1
$$

$$
\therefore \quad g(x)=\frac{x^{2}}{2}+1
$$

$A=\int_{1-\sqrt{7}}^{1+\sqrt{7}}\left(4+x-\frac{x^{2}}{2}-1\right) d x$
$=\frac{14 \sqrt{7}}{3}$
18. The number of real solutions of equation:

$$
x|x+5|+2|x+7|-2=0
$$

Ans. 3
Sol. (I) $x \geq-5$
$x^{2}+5 x+2 x+14-2=0$
$\Rightarrow x^{2}+7 x+12=0$
$\Rightarrow x=-3,-4 \quad$ (Accepted solutions)
(II)
$-7<x<-5$
$x(-x-5)+2(x+7)-2=0$
$\Rightarrow-x^{2}-5 x+2 x+14-2=0$
$\Rightarrow \quad x^{2}-3 x+12=0$
$\Rightarrow x^{2}+3 x-12=0 \quad \Rightarrow x=\frac{-3 \pm \sqrt{9+48}}{2}$
$x=\frac{-3 \pm \sqrt{57}}{2}$
(Accepted solutions) $\Rightarrow x=\frac{-3-\sqrt{57}}{2}$
(III) $x \leq-7$
$-x^{2}-5 x-2 x-14-2=0$
$\Rightarrow x^{2}+7 x+16=0$
$D<0$, hence no real solution
So number of solution $=3$

PHYSICS

1. In the given fig, find out A and B so that output will be 0 .

Ans. 0,0
Sol.

B	1	$B .1$
0	1	0
1	1	1

A	B	$A+B$	$(A+B)+B$
1	0	1	1
1	1	1	1
0	0	0	0
0	1	1	1

So the values A and B will be 0 .
2. In real gas equation $\left[P+\frac{a n^{2}}{V^{2}}\right][V-n b]=n R T$, find dimensional formula of $a b^{-1}$.

Ans. $\quad\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
Sol. $\quad \frac{a}{v^{2}}=P$
$\mathrm{a}=\mathrm{P} . \mathrm{V}^{2}$
$[\mathrm{a}]=\left[\mathrm{ML}^{5} \mathrm{~T}^{-2}\right]$
Dimensions of $\mathrm{V}=$ dimensions of b
[b] $=\left[\mathrm{L}^{3}\right]$
$\left[\mathrm{ab}^{-1}\right]=\left[\mathrm{ML}^{5} \mathrm{~T}^{-2} \mathrm{~L}^{-3}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
3. A man revolving in a circle has completed 120 rev in 3 minutes. Find the centripetal acceleration of the monkey sitting on the shoulder of the man if the radius of circle is 9 m . (Constant angular velocity)
Ans. $160 \mathrm{~m} / \mathrm{s}^{2}$
Sol. Total distance $=2 \pi \times 120=240 \pi$
$\omega=\frac{240 \pi}{3 \times 60}=\frac{4 \pi}{3}$
$a_{c}=\omega^{2} R=\left(\frac{4 \pi}{3}\right)^{2} \times 9=160 \mathrm{~m} / \mathrm{s}^{2}$
4. A constant power P is delivered to a particle of mass m. If motion starts from rest at $t=0$, the find distance travelled by particle as a function of time t.
Ans. $x=\left(\frac{2}{3} \sqrt{\frac{2 p}{m}}\right) t^{3 / 2}$
Sol. Pt $=\frac{1}{2} \mathrm{mv}^{2}$
$v=\sqrt{\frac{2 p t}{m}}$
$\frac{d x}{d t}=\sqrt{\frac{2 p t}{m}}$
$\int_{0}^{x} d x=\int_{0}^{t} \sqrt{\frac{2 p t}{m}} \cdot d t$
$x=\sqrt{\frac{2 P}{m}} \cdot \frac{t^{3 / 2}}{3 / 2}$
$=\left(\frac{2}{3} \sqrt{\frac{2 p}{m}}\right) t^{3 / 2}$
5. A particle is projected from horizontal at an angle such that maximum possible range is 64 m . Keeping angle of projection same, if velocity of projection becomes half then calculate new value of maximum possible range.
Ans. 16 m
Sol. For $\theta=45^{\circ}$
$R_{\text {max }}=\frac{u^{2}}{g}$
$\mathrm{u} \rightarrow \frac{\mathrm{u}}{2}$
$R_{\max }^{\prime}=\frac{R_{\text {max }}}{4}=\frac{64}{4}=16 \mathrm{~m}$
6. A uniform wire having resistance 20Ω is divided into 10 equal parts. Now each part is connected in parallel. Find equivalent resistance of the new combination.
Ans. (_)
Sol. $\mathrm{R}=\frac{20}{10}=2 \Omega$
$\frac{1}{R_{\text {eq }}}=\frac{1}{2}+\frac{1}{2}+\ldots \ldots \ldots . . .10$ times
$\frac{1}{R_{\text {eq }}}=\frac{10}{2}=5$
$R_{\text {eq }}=0.2 \Omega$
7. If there is a charge q travelling in an electric field (E) and magnetic field (B) with speed v. Find out force due to electric field and magnetic field on the charge.
Ans. $\quad \vec{F}_{1}=q \vec{E}, \vec{F}_{2}=q(\vec{v} \times \vec{B})$
Sol. $\quad \vec{F}_{1}=q \vec{E}$
$\vec{F}_{2}=q(\vec{v} \times \vec{B})$
8. If $\lambda_{\text {min }}$ of lyman series is $915 \AA$, find the $\lambda_{\max }$ of balmer series.

Ans. 6588Å
Sol. $\quad l_{\text {min }} \rightarrow$ max energy $\quad[n=\infty \rightarrow n=1]$
$L_{\max } \rightarrow$ min energy $\quad[\mathrm{n}=3 \rightarrow \mathrm{n}=2]$
$\frac{\mathrm{hc}}{\lambda_{\text {min }}}=\mathrm{Rz}^{2}\left[\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right]=\mathrm{Rz}^{2}$

$$
\frac{\mathrm{hc}}{\lambda_{\max }}=\mathrm{Rz}^{2}\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]=\mathrm{Rz}^{2} \times \frac{5}{36}
$$

$\frac{\lambda_{\min }}{\lambda_{\max }}=\frac{1 \times 36}{5} \Rightarrow \lambda_{\max }=\lambda_{\min } \times \frac{36}{5}=\frac{915 \times 36}{5}=6588 \AA$
9. If 20 division of vernier scale coincide with 19 th division of main scale then find out main scale division (given 0.1 mm is the least count of vernier callipers).
Ans. 2 mm
Sol. 20 VSD $=19$ MSD
$1 \mathrm{VSD}=\frac{19}{20} \mathrm{MSD}$
LC = 1 MSD-1VSD
$=1 M S D-\frac{19}{20} M S D$
$0.1 \mathrm{~mm}=\frac{1}{20} \mathrm{MSD}$
$1 \mathrm{MSD}=2 \mathrm{~mm}$
10. In a series of $R L$ circuit having 14Ω an inductance 10 mH , applied source voltage is 220 V having frequency 50 Hz . Find RMS value of current in the circuit.

Ans. $=15.33$
Sol. $X_{L}=2 \pi f L=2 \pi \times 50 \times 10 \times 10^{-3}$
$\Rightarrow X_{L}=\pi \Omega$
$Z=\sqrt{R^{2}+X_{L}{ }^{2}}=\sqrt{14^{2}+\pi^{2}}$
$\Rightarrow I_{\mathrm{rms}}=\frac{V_{\mathrm{rms}}}{Z}=\frac{220}{\sqrt{14^{2}+\pi^{2}}}=15.33$
11. Which of the following is incorrect -
(1) Stopping potential depends on frequency of incident light
(2) Stopping potential increases by increasing intensity
(3) Stopping potential depends on nature of material
(4) Stopping potential is equal to K.E/e

Ans. (2)

Sol. K. $E_{\max }=h v-\phi$
$\Rightarrow \mathrm{ev}_{\mathrm{s}}=\mathrm{h} v-\phi$
$\Rightarrow \mathrm{v}_{\mathrm{s}}=\left(\frac{\mathrm{h}}{\mathrm{e}}\right) v-\frac{\phi}{\mathrm{e}}$
So, stopping potential depends on frequency of light and nature of material of metal.
Stopping potential does not depends on intensity on incident light.
12. Current flowing in a coil depends on time ' t ' given by $i=3 t+2$, where t is in sec. If induced emf in the coil is 12 mV , then find self inductance (in mH) of coil.
Ans. 4
Sol. $E=L \frac{d r}{d t}$
$12=L \times 3$
$\mathrm{L}=4 \mathrm{mH}$
13. A geostationary satellite with time period of 6 hrs , orbiting around a planet of mass $\frac{m_{e}}{4}$ ($m_{e}=$ mass of earth). If R_{e} is radius of earth then find radius of orbit.

Ans. $\left[\frac{\mathrm{Gm}_{\mathrm{e}}}{4}\left(\frac{\mathrm{~T}}{2 \pi}\right)^{2}\right]^{1 / 3}$
Sol. $\left[\frac{G m_{e}}{4}\left(\frac{T}{2 \pi}\right)^{2}\right]^{1 / 3}$
14. It is given that $P \propto T^{3}$ then find the value of $\frac{C_{p}}{C_{v}}$ (process is adiabatic).

Ans. $3 / 2$
Sol. $\quad \mathrm{P} \propto \mathrm{T}^{3} \Rightarrow \mathrm{PT}^{-3}=\mathrm{const}$
$\Rightarrow P(P V)^{-3}=$ const $\quad(\because P V=n R T)$
$\mathrm{P}^{-2} \mathrm{~V}^{-3}=\mathrm{const}$
$\Rightarrow \mathrm{PV}^{3 / 2}=\mathrm{const}$
$\Rightarrow \gamma=\frac{3}{2}=\frac{C_{p}}{C_{v}}$
15. A hollow sphere is performing pure rolling on ground, find the ratio of rotational kinetic energy and total kinetic energy.
Ans. 2/5
Sol. Rotational K.E. $=\frac{1}{2} I \omega^{2}=\frac{1}{2} I \frac{v^{2}}{R^{2}}$
$T . E=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}=\frac{1}{2} m v^{2}+\frac{1}{2} I \frac{v^{2}}{R^{2}}$
$I=\frac{2}{3} m R^{2}$
$\frac{\text { R.K.E }}{\text { T.E }}=\frac{\frac{1}{2} \times \frac{2}{3} m R^{2} \times \frac{v^{2}}{R^{2}}}{\frac{1}{2} m v^{2}+\frac{1}{2} \times \frac{2}{3} \times \frac{v^{2}}{R^{2}} \times m R^{2}}=\frac{\frac{1}{3}}{\frac{1}{2}+\frac{1}{3}}=\frac{2}{5}$
16. If the small diameter of piston is $d_{1}=1.4 \mathrm{~cm}$ and the larger diameter of piston is $d_{2}=14 \mathrm{~cm}$. If force of 10 N is applied on small piston then find out F_{2} required to maintain same level.

Ans. 1000 N
Sol. $\quad \frac{F_{2}}{A_{2}}=\frac{F_{1}}{A_{1}}$
$F_{2}=\frac{F_{1}}{A_{1}} A_{2}=\frac{10 \times \pi \times 7^{2}}{\pi \times 0.7^{2}}$
$\mathrm{F}=1000 \mathrm{~N}$
17. A block having mass 50 kg moving with velocity v , if coefficient of kinetic friction is 0.3 then force due to kinetic friction (take $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$)

Ans. 147 N
Sol. $f=\mu \mathrm{mg}$
$\mathrm{f}=0.3 \times 50 \times 9.8=147 \mathrm{~N}$
18. Find ratio of electric field at points A and B, produced by electric dipole.

Ans. 16
Sol. $\quad E_{A}=\frac{2 k p}{r^{3}}$
$E_{B}=\frac{k \cdot p}{(2 r)^{3}}$
$\frac{E_{A}}{E_{B}}=16$
19. Match the column of order of wavelength of infrared, γ-rays, X-rays and UV rays.

List-I		List-II	
(a)	Infrared	(i)	Less then $10^{-3} \mathrm{~nm}$.
(b)	γ-rays	(ii)	10^{-3} to 1 nm.
(c)	X-rays	(iii)	1 to 300 nm.
(d)	UV-rays	(iv)	300 to 600 nm.

Ans. $\quad \mathrm{a} \rightarrow \mathrm{iv}, \mathrm{b} \rightarrow \mathrm{i}, \mathrm{c} \rightarrow \mathrm{ii}, \mathrm{d} \rightarrow \mathrm{iii}$
Sol. $\quad \lambda_{y}<\lambda_{x-\text { rays }}<\lambda_{\text {uv-rays }}<\lambda_{\mathrm{IR}}$
$\mathrm{a} \rightarrow \mathrm{iv}, \mathrm{b} \rightarrow \mathrm{i}, \mathrm{c} \rightarrow \mathrm{ii}, \mathrm{d} \rightarrow \mathrm{iii}$
20. The ratio of heat dissipated per second through 5Ω and 10Ω will be -

Ans. 2/1
Sol. since voltage drop is same, so heat dissipated is inverse ratio of resistance,
$H_{R 1}: H_{R 2}=\frac{1}{R_{1}}: \frac{1}{R_{2}}$
$\frac{\mathrm{H}_{1}}{\mathrm{H}_{2}}=\frac{10}{5}=\frac{2}{1}$
21. Why metal chain hangs at the rear part of tankers containing inflammable liquid.
(1) To make it look fancy
(2) To inform other vehicles about tanker
(3) So that extra electron can be transferred to earth.
(4) To protect the Tyre from damage.

Ans. (3)
Sol. Due to air drag charges induced on tanker, to neutralise the charge metal chains hangs at the rear part of the tankers touching with earth.
22. A Force acts on a body such that momentum $\vec{p}=\cos (k t) \hat{i}-\sin (k t) \hat{j}$. Find the angle between \vec{p} and \vec{F}.
Ans. 90°
Sol. $\vec{F}=\frac{d \vec{p}}{d t}=-K \sin (K t) \hat{i}-K \cos (K t) \hat{j}$
$\vec{P} . \vec{F}=0$
$\Rightarrow \theta=90^{\circ}$
23. A sonometer wire of length 90 cm , whose fundamental frequency is 400 Hz . Wire has same tension and now, fundamental frequency changed to 600 Hz . Find the new length of wire.
Ans. 60 cm

Sol. $n=\frac{1}{2 \ell} \sqrt{\frac{T}{m}}$
$\mathrm{n} \ell=\mathrm{const}$
$n_{1} \ell_{1}=n_{2} \ell_{2}$
$\mathrm{n}_{1}=400, \mathrm{n}_{2}=600$
$\ell_{1}=90 \mathrm{~cm}, \ell_{2}=$?
$400 \times 90=600 \times \ell_{2}$
$\ell_{2}=60 \mathrm{~cm}$
24. A galvanometer having resistance 100Ω is connected in series with 400Ω resistance and measures maximum of 10 V and now galvanometer is converted into ammeter. What should be the value of shunt resistance so that it can measure maximum of 10 A of current.
Ans. 0.2Ω
Sol. $\quad \mathrm{V}=\left(\mathrm{I}_{\mathrm{g}}\right)_{\text {max }} \times 500$
$10=\left(\mathrm{l}_{\mathrm{g}}\right)_{\max } \times 500$
$\left(I_{g}\right)_{\max }=\frac{1}{50} \mathrm{~A}$

$\left(10-\frac{1}{50}\right) R s=\frac{1}{50} \times R g$
$\mathrm{Rs}=\frac{\frac{1}{50} \times 100}{\left(10-\frac{1}{50}\right)}=\frac{2}{10-0.02}$

$R s=0.2 \Omega$
25. Find the expression for mean free path of a gas molecule of number density n and diameter of molecule is d.

Ans. $\quad \lambda=\frac{1}{\sqrt{2} \pi \mathrm{nd}^{2}}$
Sol. $\quad \lambda=\frac{1}{\sqrt{2} \pi \mathrm{nd}^{2}}$

CHEMISTRY

1. IUPAC naming of given compound

(1) 2-formyl-4-hydroxy hept-6-enoic acid
(2) 6-formyl-4-hydroxy hept-1-enoic acid
(3) 4-hydroxy-6-formyl-hept-1-enoic acid
(4) 4-hydroxy-2-formyl-hept-6-enoic acid

Ans. (1)
Sol. 2-formyl-4-hydroxy hept-6-enoic acid.
2. Coagulation of egg is due to
(1) Denaturation of protein
(2) 2° structure does not change
(3) 1° structure does not change
(4) 3° structure does not change

Ans. (1)
Sol. Coagulation of egg is due to denaturation of protein.
3. Square planar complex Mabcd will have how many isomers
(1) 2
(2) 3
(3) 4
(4) 5

Ans. (2)
Sol. Square planar complex Mabcd will have 3 isomers.
4. For $n=4,|m|=1, m_{s}=\frac{1}{2}$ then maximum number of electron with this combination will be

Ans. (6)
Sol. $n=4, l=0,1,2,3$
$\mathrm{l}=0, \mathrm{~m}=0$
$l=1, m=-1,0,+1 \Rightarrow 2$
$l=2, m=-2,-1,0,+1,+2 \Rightarrow 2$
$l=3, m=-3,-2,-1,0,+1,+2,+3 \Rightarrow 2$
5. Calculate number of π bond present in product B

Ans. (4)

Sol.

total number of π bond in $B=4$
6. Which of the following doesn't have electron in t_{2} orbital
(1) $\left[\mathrm{TiCl}_{4}\right]$
(2) $\left[\mathrm{MnO}_{4}\right]^{2-}$
(3) $\left[\mathrm{FeCl}_{4}\right]^{2-}$
(4) $\left[\mathrm{Co}(\mathrm{CN})_{4}\right]^{2-}$

Ans. (1)
Sol. $\quad \mathrm{Ti}^{+4}$ have d^{0} electronic configuration.
7. Major product in the given reaction

(1)

(2)

(3)

(4)

Ans. (2)

Sol.

8. Statement-A : NF_{3} have less dipole moment than NH_{3}.

Statement-R : F is more electronegative and bond moment of $\mathrm{N}-\mathrm{H}$ bond is in same direction of lone pair.
(1) Both A and R are correct and R is the correct explanation of A.
(2) Both A and R are correct, but R is not the correct explanation of A.
(3) A is correct but, R is incorrect.
(4) R is correct but, A is incorrect.

Ans. (1)
Sol. $\quad \mathrm{NF}_{3}$ have less dipole moment than NH_{3}.
F is more electronegative and bond moment of $\mathrm{N}-\mathrm{H}$ bond is in same direction of lone pair. Both A and R are correct and R is the correct explanation of A.
9. Compound having dipole moment $=0$
$\mathrm{H}_{2}, \mathrm{BF}_{3}, \mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{NF}_{3}, \mathrm{BeF}_{2}, \mathrm{SiF}_{4}, \mathrm{H}_{2} \mathrm{~S}$
Ans. (6)
Sol. $\mathrm{H}_{2}, \mathrm{BF}_{3}, \mathrm{CH}_{4}, \mathrm{CO}_{2}, \mathrm{BeF}_{2}, \mathrm{SiF}_{4}$ will have dipole moment $=0$.
10. Find the major product in given sequence

(1) Acetic acid
(2) Acetaldehyde
(3) ethane
(4) methane

Ans. (4)
Sol.

11. List-I

(P) IF
(Q) $I F_{7}$
(R) ICl_{3}
(S) BF_{3}
(1) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 4$
(3) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 4 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 1$
(2) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 1$
(4) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 1 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 3$

List-II

(1) Linear
(2) Pentagonal bipyramidal
(3) T-shape
(4) Trigonal Planar

Ans. (1)
Sol. $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 4$ is the correct match.
12. $\mathrm{FeO} . \mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3} \xrightarrow{\text { air }} \mathrm{A}+\mathrm{B}+\mathrm{C}\left(\mathrm{CO}_{2}\right)$

Sum of magnetic moment (nearest integer) of central metals in A and B will be
Ans. (6)
Sol. $\quad \mathrm{A}=\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Fe}^{+3} \rightarrow \mathrm{~d}^{5}$ configuration, $\mu=5.87 \mathrm{BM}$
$\mathrm{B}=\mathrm{Na}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{Cr}^{+6} \rightarrow \mathrm{~d}^{0}$ configuration, $\mu=0 \mathrm{BM}$
13. $\quad E_{M^{2+} / M}^{\circ}=0.34 V$ and $E_{X_{2} / X^{-}}^{\circ}=-0.46 \mathrm{~V}$

Select the correct statement
(1) $\mathrm{E}_{\text {cell }}=0.80 \mathrm{~V}$
(2) $E_{\text {cell }}=-0.80 \mathrm{~V}$
(3) Cell reaction $M+X_{2} \rightarrow M^{2+}+2 X^{-}$is spontaneous
(4) Cell reaction $\mathrm{M}^{2+}+2 \mathrm{X}^{-} \rightarrow \mathrm{M}+\mathrm{X}_{2}$ is spontaneous

Ans. (4)
Sol. $\quad E_{\text {cell }}^{0}=E_{M^{2+} / M}^{0}+E_{X^{-} / X_{2}}^{0}$

$$
=-0.34+0.46=0.12 \mathrm{~V}
$$

Cell reaction $\mathrm{M}^{2+}+2 \mathrm{X}^{-} \rightarrow \mathrm{M}+\mathrm{X}_{2}$ is spontaneous
14. $\mathrm{Ti}^{2+}, \mathrm{Cr}^{2+}, \mathrm{V}^{2+}$

How many of them liberate H_{2} gas with dil. mineral acid
(1) 0
(2) 2
(3) 1
(4) 3

Ans. (4)
Sol. All of them liberate H_{2} gas.
15. Correct order of increasing atomic size of $13^{\text {th }}$ group element will be
(1) $\mathrm{Tl}>\mathrm{In}>\mathrm{Al}>\mathrm{Ga}>\mathrm{B}$
(2) $\mathrm{Tl}<\mathrm{In}>\mathrm{Al}>\mathrm{Ga}>\mathrm{B}$
(3) $\mathrm{Tl}>\mathrm{In}>\mathrm{Al}<\mathrm{Ga}>\mathrm{B}$
(4) $\mathrm{In}>\mathrm{Tl}>\mathrm{Ga}>\mathrm{Al}>\mathrm{B}$

Ans. (1)
Sol. $\mathrm{Tl}>\mathrm{In}>\mathrm{Al}>\mathrm{Ga}>\mathrm{B}$ is correct order of atomic size.
16. On passing 1 C charge through an aq. AgNO_{3} solution:
(1) 1 g atom of Ag is deposited
(2) 1 electrochemical equivalent of Ag is deposited
(3) 1 chemical equivalent of Ag is deposited
(4) 1 gm of Ag is deposited

Ans. (2)
Sol. $\quad W=Z \times q$
Given: $q=1$
W = Z
Thus, 1 electrochemical equivalent of Ag is deposited
17. List-I
(P) Metamer
(Q) Chain isomer
(R) Functional isomer
(S) Position isomer
(1) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 1 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 4$
(3) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 4$

List-II

(1) Isopentane \& neopentane
(2) propanal \& propanone
(3) methoxy propane \& ethoxyethane
(4) n-propanol \& isopropanol
(2) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 1 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 2$
(4) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 4$

Ans. (1)
Sol. $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 1 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 4$ is correct match
18. Acetic acid dimerizes in liquid benzene. 60 g of acetic acid is dissolved in 500 g of benzene.

Find the value of ΔT_{f} (Given: $K_{f}=5 \frac{\mathrm{~K} \times \mathrm{kg}}{\mathrm{mole}}$)
Assume complete association
Ans. (5)
Sol. $\quad i=1-\frac{1}{2}=\frac{1}{2}$
$\Delta \mathrm{T}_{\mathrm{f}}=\frac{1}{2} \times 5\left(\frac{\frac{60}{60}}{0.5}\right)=5$
19. Given combustion of benzene $\Delta_{\mathrm{C}} \mathrm{H}=-3267 \mathrm{KJ} / \mathrm{mol}$

Calculate standard enthalpy of formation for 2 mole of benzene from the following data
$\Delta_{\mathrm{f}} \mathrm{H}_{\mathrm{CO}_{2}}=-393.5 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{\mathrm{f}} \mathrm{H}_{\mathrm{H}_{2} \mathrm{O}}=-285.83 \mathrm{~kJ} / \mathrm{mol}$
Ans. (97.02)
Sol. $\quad \mathrm{C}_{6} \mathrm{H}_{6}+\frac{15}{2} \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
$\Delta \mathrm{H}=\Delta_{\mathrm{f}} \mathrm{H}_{\text {product }}-\Delta_{\mathrm{f}} \mathrm{H}_{\text {reactant }}$
$-3267=6 \Delta_{\mathrm{f}} \mathrm{H}_{\mathrm{CO}_{2}}+3 \Delta_{\mathrm{f}} \mathrm{H}_{\mathrm{H}_{2} \mathrm{O}}-\Delta_{\mathrm{f}} \mathrm{H}_{\mathrm{C}_{6} \mathrm{H}_{6}}$
$-3267=(6 \times-393.5)+(3 \times-285.8)-\Delta_{f} H_{C_{6} H_{6}}$
$\Delta_{f} H_{C_{6} H_{6}}=-48.51 \mathrm{~kJ} / \mathrm{mol}$
For $2 \mathrm{~mol}=2 \times-48.51=-97.02 \mathrm{~kJ} / \mathrm{mol}$
20. Given elementary reaction

$$
2 \mathrm{~A}+\mathrm{B} \rightleftharpoons \mathrm{C}
$$

Initial pressure $1.5 \quad 0.7$
After time t pressure of $C=0.5$. Find $\frac{R_{1}}{R_{2}}$
Ans. (31.5)
Sol. $\quad t=0 \rightarrow[A]=1.5, \quad[B]=0.7$
Given at time $\mathrm{t}[\mathrm{C}]=0.5$
$\mathrm{t}=\mathrm{t} \rightarrow[\mathrm{A}]=0.5,[\mathrm{~B}]=0.2$
$\frac{R_{1}}{R_{2}}=\frac{k[A]^{2}[B]}{k\left[A_{t}\right]^{2}\left[B_{t}\right]}$
$\frac{R_{1}}{R_{2}}=\frac{\mathrm{k}[1.5]^{2}[0.7]}{\mathrm{k}[0.5]^{2}[0.2]}$
$\frac{63}{2}=31.5$
21. Which of the following is incorrect match for product
(1)

(2)

(3)

(4)

Ans. (1)

Sol.

The substitution of -OH group in phenol is not possible due to delocalization of its lone pair within benzene ring
22. Consider the following reaction:

(1) Adipic acid
(2) Oxalic acid
(3) Succinic acid
(4) Benzoic Acid

Ans. (1)

Sol.

