JEE(Main)-2024 | 06 April 2024 (Shift-2 Evening) | Question Paper with Solutions | Memory Based
MATHEMATICS

1. Let $f(x)=\frac{1}{7-\sin x}$, then Range of $f(x)$ is

Ans. $\left[\frac{1}{8}, \frac{1}{6}\right]$
Sol. $\quad-1 \leq \sin x \leq 1$
$6 \leq 7-\sin x \leq 8$
$\frac{1}{8} \leq \frac{1}{7-\sin x} \leq \frac{1}{6}$
$\left[\frac{1}{8}, \frac{1}{6}\right]$
2. $|A|=3$, order $=3$
then $I \operatorname{adj}\left(4 \operatorname{adj}\left(-3 \operatorname{adj}\left(3 \operatorname{adj}(2 A)^{-1}\right) I=2^{m} \cdot 3^{n}\right.\right.$. Find $m+n$
Ans. 80
Sol. $\quad \mid \operatorname{adj}\left(4 \operatorname{adj}\left(-3 \cdot 3^{2}\right) \operatorname{adjadj}(2 A)^{-1} \mid\right.$
$\left|\operatorname{adj}\left(4\left(-3^{3}\right)^{2} \operatorname{adj}\left(\operatorname{adj}\left(\operatorname{adj}(2 A)^{-1}\right)\right)\right)\right|$
$\mid 4^{2} 3^{12} \operatorname{adj}\left(\operatorname{adj}\left(\operatorname{adj} \operatorname{adj}(2 A)^{-1} \mid\right.\right.$
$2^{12} \cdot 3^{36}\left|2 A^{-1}\right|^{4^{4}}$
$2^{12} \cdot 3^{36} \cdot\left(2^{3}\right)^{16}\left|A^{-1}\right|^{16}$
$2^{12} \times 3^{36} \times 2^{48} \frac{1}{|\mathrm{~A}|^{16}}$
$=2^{60} \cdot 3^{36} \cdot \frac{1}{3^{16}}$
$=2^{60} \cdot 3^{20}$
$\mathrm{m}=60, \mathrm{n}=20$
$\mathrm{m}+\mathrm{n}=80$
3. Let $x^{2}+\sqrt{2} x-8=0$ and $S_{n}=\alpha^{n}+\beta^{n}$, here $\alpha \& \beta$ are roots of given equation, $(n \geq 1)$. Find value of $\frac{\mathrm{S}_{10}+\sqrt{2} \mathrm{~S}_{9}}{8 \mathrm{~S}_{8}}$.

Ans. 1
Sol. $\quad S_{n}+\sqrt{2} S_{n-1}-8 S_{n-2}=0$
put $\mathrm{n}=10$,
$\frac{\mathrm{S}_{10}+\sqrt{2} \mathrm{~S}_{9}}{8 \mathrm{~S}_{8}}=1$
4. $\int \frac{1}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x} d x=\frac{1}{12} \tan ^{-1}(3 \tan x)+c$

Find maximum and minimum value of $a \sin x+b \cos x$
Ans. maximum value $=\sqrt{40}$, minimum value $=-\sqrt{40}$
Sol. $\int \frac{1}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x} d x$
$\int \frac{\sec ^{2} x}{a^{2} \tan ^{2} x+b^{2}} d x$
$\frac{1}{a^{2}} \int \frac{\sec ^{2} x}{\tan ^{2} x+(b / a)^{2}} d x$
$\tan x=t$
$\sec ^{2} x d x=d t$
$\frac{1}{a^{2}} \int \frac{1}{t^{2}+(b / a)^{2}} d t$
$\frac{1}{a^{2}}\left(\frac{a}{b}\right) \tan ^{-1}\left(\frac{a t}{b}\right)+c$
$\frac{1}{a b} \tan ^{-1}\left(\frac{a}{b} \tan x\right)+c$
$\frac{a}{b}=3 \quad a b=12$
$a=3 b \quad 3 b^{2}=12$
$b=2$
$a=6$
max value of $a \sin x+b \cos x=\sqrt{a^{2}+b^{2}}=\sqrt{40}$
min value of $a \sin x+b \cos x=-\sqrt{a^{2}+b^{2}}=-\sqrt{40}$
5. $1(1+x)+2(1+x)^{2}+3(1+x)^{3}+\cdots+60(1+x)^{60}$

Ans. $S=(1+x)^{61}\left(\frac{60}{x}-\frac{1}{x^{2}}\right)+\frac{(1+x)}{x^{2}}$
Sol.

$$
\begin{aligned}
& S=1(1+x)+2(1+x)^{2}+3(1+x)^{3}+\cdots+60(1+x)^{60} \\
& (1+x) S=\quad-\quad(1+x)^{2}+2(1+x)^{3}+\cdots+59(1+x)^{60}+60(1+x)^{61} \\
& -\quad-x S=(1+x)+(1+x)^{2}+(1+x)^{3}+\cdots+(1+x)^{60}-60(1+x)^{61} \\
& -x S=(1+x)\left(\frac{\left.(1+x)^{60}-1\right)}{x}\right)-60(1+x)^{61} \\
& S=-(1+x)\left(\frac{(1+x)^{60}-1}{x^{2}}\right)+60 \frac{(1+x)^{61}}{x} \\
& S=-\frac{(1+x)^{61}}{x^{2}}+\frac{(1+x)}{x^{2}}+\frac{60(1+x)^{61}}{x} \\
& S=(1+x)^{61}\left(\frac{60}{x}-\frac{1}{x^{2}}\right)+\frac{(1+x)}{x^{2}}
\end{aligned}
$$

6. $\vec{A}=\hat{i}+\hat{j}-2 \hat{k}$
$\vec{B}=(\vec{A} \times(\hat{i}+\hat{j})) \times \hat{i}$
then find projection of \vec{A} on \vec{B}
Ans. 2
Sol. $\quad \vec{A} \times(\hat{i}+\hat{j})=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -2 \\ 1 & 1 & 0\end{array}\right|$
$\overrightarrow{\mathrm{A}} \times(\hat{\mathrm{i}}+\hat{\mathrm{j}})=2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}$
$\vec{B}=(\vec{A} \times(\hat{i}+\hat{j})) \times \hat{j}=2 \hat{k}$
Projection of \vec{A} on $\vec{B}=\left|\frac{\vec{B} \cdot \vec{A}}{|\vec{B}|}\right|=\left|\frac{2 \hat{k} \cdot \hat{i}+\hat{j}-2 \hat{k})}{2}\right|$

$$
=\frac{4}{2}=2
$$

7. In $\triangle A B C$ vertices $A(2,5), B(8,3)$ and $C(h, k)$ and orthocenter is $(6,1)$ then value of $2 h+k$ is

Ans. 13
Sol. $\quad \therefore \frac{4}{-4} \times \frac{k-3}{h-8}=-1 \Rightarrow k-3=h-8 \Rightarrow h-k=5$
and $\frac{2}{2} \times \frac{k-5}{h-2}=-1 \Rightarrow k-5=-h+2 \Rightarrow h+k=7$
$\therefore \mathrm{h}=6$
$\mathrm{k}=1$

$2 h+k=13$
8. Sides of a triangle are $A B=9, B C=7, A C=8$. Find cos3C.

Ans. $\frac{-262}{343}$
Sol. $\quad \operatorname{cosc}=\frac{7^{2}+8^{2}-9^{2}}{2(7)(8)}=\frac{2}{7}$
$\cos 3 C=4 \cos ^{3} c-3 \cos C$
$=4\left(\frac{8}{343}\right)-\frac{6}{7}=-\frac{262}{343}$

9. Find the locus of P such that the ratio of distance of P from $A(3,1)$ and $B(1,2)$ is $5: 4$.

Ans. $9 x^{2}+9 y^{2}+46 x-68 y-35=0$
Sol. Let $P(h, k) \quad A(3,1), \quad B(1,2)$

$$
\begin{aligned}
& \frac{\mathrm{PA}}{\mathrm{~PB}}=5 / 4 \\
& \Rightarrow \frac{(\mathrm{~h}-3)^{2}+(\mathrm{k}-1)^{2}}{(\mathrm{~h}-1)^{2}+(\mathrm{k}-2)^{2}}=\frac{25}{16}
\end{aligned}
$$

$\Rightarrow \frac{\mathrm{h}^{2}+\mathrm{k}^{2}-6 \mathrm{~h}-2 \mathrm{k}+10}{\mathrm{~h}^{2}+\mathrm{k}^{2}-2 \mathrm{~h}-4 \mathrm{k}+5}=\frac{25}{16}$
$\Rightarrow 16 h^{2}+16 k^{2}-96 h-32 k+160=25 h^{2}+25 k^{2}-50 h-100 k+125$
$\Rightarrow 9 h^{2}+9 k^{2}+46 \mathrm{~h}-68 \mathrm{k}-35=0$
$\Rightarrow 9 x^{2}+9 y^{2}+46 x-68 y-35=0$
10. If area enclosed by region $\frac{a}{x^{2}} \leq y \leq \frac{1}{x}$ between $x=1$ and $x=2($ where $a \in(0,1))$ is $\ln 2-\frac{1}{7}$, then find $(7 a-3)$

Ans. -1
Sol. Area $=\int_{1}^{2}\left(\frac{1}{x}-\frac{a}{x^{2}}\right) d x$
$=\ln x+\left.\frac{a}{x}\right|_{1} ^{2}$
$=\ln 2+\frac{a}{2}-a=\ln 2-\frac{1}{7}$

$\frac{\mathrm{a}}{2}=\frac{1}{7}$
$\Rightarrow 7 \mathrm{a}=2$
$\Rightarrow 7 \mathrm{a}-3=-1$
11. Let $A=\{1,2,3,4,5\}$, a Relation is defined as $4 x \geq 5 y, x \in A, y \in A$. Number of elements in $R=m$ and number of elements in $A \times A$ is n, then find $m+n$

Ans. 35
Sol. Relation is $4 x \geq 5 y$
$(4,1)$
$(5,1)$
$(5,2)$
$(5,3) \quad(5,4)$
$(4,2)$
$(3,1)$
$(3,2) \quad(2,1)$
$\therefore \mathrm{m}=10$
no. of element in $A \times A=5^{2}=25=n$
$\therefore \mathrm{m}+\mathrm{n}=35$
12. ${ }^{n+1} C_{r+1}:{ }^{n} C_{r}:{ }^{n-1} C_{r-1}=55: 35: 21$ then $2 n+5 r$ is equal to

Ans. 50
Sol. $\quad \frac{{ }^{n} c_{r}}{{ }^{n+1} c_{r+1}}=\frac{35}{55} \Rightarrow \frac{r+1}{n+1}=\frac{7}{11}$
$\Rightarrow 11 r+11=7 n+7$
$\Rightarrow 11 r=7 n-4$
$\frac{{ }^{n-1} c_{r-1}}{{ }^{n} c_{r}}=\frac{r}{n}=\frac{3}{5} \Rightarrow 5 r=3 n$
$\Rightarrow 5 r=3 n \quad \& \quad 11 r=7 n-4$
Solving we get
$\mathrm{r}=\mathrm{n}-4$
$r=6$
$\mathrm{n}=10$
So, $2 n+5 r=2 \times 10+5 \times 6=20+30=50$
13. If $f(x)=3+\left[\frac{x}{2}\right]-[\sqrt{x}]$ and $x \in[0,8]$ then find sum of points of discontinuity of $f(x)$

Ans. 17
Sol. Points to be check $x=0,1,2,4,6,8$
at $x=0 \quad f(0)=3=f\left(0^{+}\right)$continuous
at $x=4 \quad f(4)=f\left(4^{+}\right)=3=f\left(4^{-}\right)$continuous
\Rightarrow Sum $=1+2+6+8=17$
14. If the function $f(x)=\left(\frac{1}{x}\right)^{2 x} \quad x>0$ attains the maximum value at $x=\frac{1}{e}$ then
(1) $\mathrm{e}^{\pi}<\pi^{e}$
(2) $\mathrm{e}^{2 \pi}<(2 \pi)^{e}$
(3) $(2 e)^{\pi}>(\pi)^{2 e}$
(4) $e^{\pi}>\pi^{e}$

Ans. (4)
Sol. $f\left(\frac{1}{\pi}\right)<f\left(\frac{1}{e}\right)$
$(\pi)^{2 / \pi}<\mathrm{e}^{\left(\frac{2}{e}\right)} \Rightarrow \pi^{2 e}<\mathrm{e}^{2 \pi}$

$\pi^{e}<\mathrm{e}^{\pi}$
15. NAGPUR, Rearrange it and find $315^{\text {th }}$ word in Dictionary.

Ans. 242
Sol. Order NAGPUR
A
G
N
P \quad Rank $=2 \times 5!+1(1!)+1$
$R \quad=240+2=242$
U
16. A curve $e^{y} \sin x d y+\cos x\left(e^{y}+1\right) d x=0$ passes through $\left(\frac{\pi}{2}, 0\right)$. then find $e^{y\left(\frac{\pi}{6}\right)}$.

Ans. 3
Sol. $\int \frac{e^{y}}{e^{y}+1} d y=\int-\frac{\cos x}{\sin x} d x$
$\ln \left|e^{y}+1\right|=-\ln |\sin x|+c$
$x=\pi / 2, y=0$
$\Rightarrow \quad \ln 2=0+c$
$\Rightarrow \quad c=\ln 2$
$\ln \left|e^{y}+1\right|=-\ln |\sin x|+\ln 2$
When $\mathrm{x}=\frac{\pi}{6}$
$\ln \left(e^{y}+1\right)=-\ln \left(\frac{1}{2}\right)+\ln 2$
$\ln \left(e^{y}+1\right)=2 \ln 2$
$e^{y}+1=4$
$e^{y}=3$
$\therefore \mathrm{e}^{\mathrm{y}\left(\frac{\pi}{6}\right)}=3$
17. M computers complete a work in 17 days. If 4 Computers decrease everyday then it takes 8 more days to complete the same work. find the value of M.

Ans. 150
Sol. Total work $=17 \mathrm{mx}$
$17 m x=m x+(m-4) x+(m-8) x+\ldots .25$ terms
$\Rightarrow 17 m=\frac{25}{2}(2 m+24(-4))$
$\Rightarrow 34 m=25(2 m-96)$
$\Rightarrow 25 \times 96=16 \mathrm{~m}$
$\Rightarrow \mathrm{m}=\frac{25 \times 96}{16}=150$
18. Let $g(x)=h\left(e^{x}\right) \cdot e^{h(x)}$, and it is given that $h(0)=0, h(1)=1, h^{\prime}(0)=h^{\prime}(1)=2$, then find $g^{\prime}(0)$.

Ans. 4
Sol. $g(x)=h\left(e^{x}\right) \cdot e^{h(x)}$
$\Rightarrow g^{\prime}(x)=h^{\prime}\left(e^{x}\right) \cdot e^{x} \cdot e^{h(x)}+e^{h(x)} \cdot h^{\prime}(x) \cdot h\left(e^{x}\right)$
$\Rightarrow g^{\prime}(0)=h^{\prime}(1) \cdot e^{0} \cdot e^{h(0)}+e^{h(0)} \cdot h^{\prime}(0) \cdot h(1)$
$\Rightarrow g^{\prime}(0)=2 \times 1 \times 1+1 \cdot 2 \cdot 1=4$
19. $\int_{0}^{2}\left(\left[x^{2}\right]+\left[\frac{x^{2}}{2}\right]\right) d x=a+b \sqrt{2}+c \sqrt{3}$, then find value of $a+b+c$

Ans. 4
Sol. $\int_{0}^{2}\left[x^{2}\right] d x+\int_{0}^{2}\left[\frac{x^{2}}{2}\right] d x$
$=0+[x]_{1}^{\sqrt{2}}+2[x]_{\sqrt{2}}^{\sqrt{3}}+3[x]_{\sqrt{3}}^{2}+0+[x]_{\sqrt{2}}^{2}$
$=(\sqrt{2}-1)+2 \sqrt{3}-2 \sqrt{2}+6-3 \sqrt{3}+2-\sqrt{2}$
$=7-2 \sqrt{2}-\sqrt{3}$
$a=7, \quad b=-2, c=-1$
So $a+b+c=7-2-1=4$
20. $\frac{x-\lambda}{-1}=\frac{y-2}{1}=\frac{z-3}{2}$
$\frac{x-1}{2}=\frac{y-4}{3}=\frac{z-0}{1}$
shortest distance between these two given lines is $\frac{44}{\sqrt{3}}$ find λ.
Ans. -48
Sol. Formula of shortest distance

$$
\begin{aligned}
& \Rightarrow \frac{\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|}{\sqrt{\left(a_{1} b_{2}-b_{1} a_{2}\right)^{2}+\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(a_{1} c_{2}-a_{2} c_{1}\right)^{2}}} \\
& =\frac{\left|\begin{array}{ccc}
\lambda-1 & -2 & 3 \\
-1 & 1 & 2 \\
2 & 3 & 1
\end{array}\right|}{\sqrt{(-5)^{2}+(-5)^{2}+(-5)^{2}}} \\
& =\frac{-5 \lambda+20}{5 \sqrt{3}} \\
& =\frac{-\lambda-4}{\sqrt{3}}=\frac{44}{\sqrt{3}} \\
& -\lambda-4=44 \\
& -\lambda=48 \\
& \lambda=-48
\end{aligned}
$$

PHYSICS

1. Energy supplied to 1 mole of monoatomic gas is 48 J and changes its temperature by $2^{\circ} \mathrm{C}$. Find the work done by gas.
Ans. 23 J
Sol. By $1^{\text {st }}$ law of thermodynamics
$\Delta \mathrm{Q}=\Delta \mathrm{W}+\Delta \mathrm{U}$
$48=W_{\text {gas }} \frac{3}{2} \times 1 \times \frac{25}{3} \times 2$
$\Rightarrow \mathrm{W}_{\text {gas }}=48-25$
$\Rightarrow \mathrm{W}_{\text {gas }}=23 \mathrm{~J}$
2. If a car is moving on a banked road of radius $R=300 \mathrm{~m}$ and angle of banking 30°, then find the safe speed of the car.
Ans. $\quad 51.2$ m/s

Sol.

$N \sin \theta+\mu N \cos \theta=\frac{m v^{2}}{R}$
$N \cos \theta-\mu N \sin \theta=m g$
$V_{\max }=\sqrt{\left(\frac{\tan \theta+\mu}{1-\mu \tan \theta}\right) R g}$
$V_{\max }=\sqrt{\left(\frac{0.2+\frac{1}{\sqrt{3}}}{1-\frac{0.2}{\sqrt{3}}}\right) 300 \times 10}$
$v_{\max }=\sqrt{\left(\frac{0.2+0.577}{1-0.1154}\right) 3000}$
$v_{\max } \sqrt{\frac{0.777}{0.884} \times 3000}=51.2 \mathrm{~m} / \mathrm{s}$
3. If displacement in terms of time is given by $x^{2}=1+t^{2}$ and acceleration is a function of x is x^{-n}, then find the value of n.

Ans. 3

Sol. $\quad x^{2}=1+t^{2}$
$2 x \frac{d x}{d t}=2 t$
$\frac{d x}{d t}=\frac{t}{x}$
Differentiating eq. (i)
$x \frac{d^{2} x}{d t^{2}}+\left(\frac{d x}{d t}\right)^{2}=1$
$x(a)+\left(\frac{t}{x}\right)^{2}=1$
$a=\frac{1-\left(\frac{t}{x}\right)^{2}}{x} \Rightarrow \frac{\left(x^{2}-t^{2}\right)}{x^{3}}$
$a=\frac{1}{x^{3}}=x^{-3}$
$\mathrm{n}=3$
4. There is a block of weight 200 N which is hanged from a chain of mass 10 kg which is connected with a tree from top. Find the tension at the topmost point of chain.
Ans. 300 N

Sol.

$F=100+200$
$=300 \mathrm{~N}$
5. Find the refractive index of a convex lens whose R_{1} and R_{2} are 15 cm and 30 cm respectively and its focus is 20 cm .

Ans. $\mu=1.5$
Sol. $\quad R_{1}=15 \mathrm{~cm}$
$\mathrm{R}_{2}=30 \mathrm{~cm}$
$\mathrm{f}=20 \mathrm{~cm}$
$\mu=$?
$\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$\frac{1}{20}=(\mu-1)\left(\frac{1}{15}-\frac{1}{(-30)}\right)$

$\frac{1}{20}=(\mu-1)\left(\frac{1}{10}\right)$
$\mu-1=\frac{1}{2}$
$\mu=1.5$
6. If kinetic energy of a particle increases by 36%. What is the percentage change in momentum of the particle?
Ans. 16.62\%
Sol. $\quad K=\frac{p^{2}}{2 m}$
$\Rightarrow \mathrm{p}=\sqrt{2 \mathrm{mk}}$
$\Delta p=\frac{p_{f}-p_{i}}{p_{i}} \times 100$
$=\left[\frac{p_{f}}{p_{i}}-1\right] \times 100$
$=\left[\frac{\sqrt{2 m k_{f}}}{\sqrt{2 m k_{i}}}-1\right] \times 100$
$=\left[\sqrt{\frac{k_{F}}{k_{i}}}-1\right] \times 100=\left[\sqrt{\frac{136}{100}}-1\right] \times 100$
$=16.619 \%$
$\simeq 16.62 \%$ increase
7. Light of wavelength $\lambda=300 \mathrm{~nm}$ incident on a metal surface whose work function $\phi=2.4 \mathrm{eV}$, then find stopping potential.
Ans. 1.73 V
Sol. $\quad e V_{s}=\frac{h c}{\lambda}-\phi \quad, \frac{h c}{\lambda}=\frac{12400}{\lambda(\operatorname{in} \AA)} e V$
Energy of photon $=\frac{12400}{3000}=\frac{124}{30} \mathrm{ev}$
$e V_{s}=\frac{124}{30} e V-2.4 e V$
$\mathrm{V}_{\mathrm{s}}=1.73 \mathrm{~V}$
8. If three particles are thrown from same height, $1^{\text {st }}$ vertically up with speed u, second vertically down with speed u and third is released from rest. If time taken by the first particle, second particle and third particle is t_{1}, t_{2} and t_{3} respectively. Find relation between t_{1}, t_{2} and t_{3}.
Ans. $\quad t_{3}=\sqrt{t_{1} t_{2}}$
Sol. Case (i)

$$
\begin{equation*}
-H=u t_{1}-\frac{1}{2} g t_{1}^{2} \tag{i}
\end{equation*}
$$

Case (ii)

$$
\begin{equation*}
-H=u t_{2}-\frac{1}{2} g t_{2}^{2} \tag{ii}
\end{equation*}
$$

Case (iii)

$$
\begin{equation*}
-\mathrm{H}=0-\frac{1}{2} \mathrm{gt}_{3}^{2} \tag{iii}
\end{equation*}
$$

Multiply equation 1 by t_{1} and equation 2 by t_{2} and add the equations
$-H t_{1}-H t_{2}=-\frac{1}{2} g t_{1} t_{2}\left(t_{1}+t_{2}\right)$
$H=\frac{1}{2} g t_{1} t_{2}$
$\frac{1}{2} \mathrm{gt}_{3}^{2}=\frac{1}{2} \mathrm{gt}_{1} \mathrm{t}_{2}$
$\mathrm{t}_{3}=\sqrt{\mathrm{t}_{1} \mathrm{t}_{2}}$
9. Find moment of inertia about an axis passing through centroid and perpendicular to the plane of triangle

Ans. $4 \mathrm{~kg} \mathrm{~m}^{2}$
Sol.
$h_{2}=\frac{1}{3} \times \sqrt{3}=\frac{1}{\sqrt{3}}$
$I_{\text {com }}=2 \times\left(\frac{1}{\sqrt{3}}\right)^{2} 4 \times\left(\frac{1}{\sqrt{3}}\right)^{2}+6\left(\frac{1}{\sqrt{3}}\right)^{2}$
$=\frac{1}{3} \times 12$
$\mathrm{I}_{\text {com }}=4 \mathrm{~kg} \mathrm{~m}{ }^{2}$

10. What are the dimensional formula of specific heat and latent heat.

Ans. $[\mathrm{S}]=\mathrm{L}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1},[\mathrm{~L}]=\mathrm{L}^{2} \mathrm{~T}^{-2}$
Sol. $\quad d Q=m S d T$

$$
\begin{aligned}
& d Q=m L \\
& L=\frac{d Q}{m}
\end{aligned}
$$

$S=\frac{d Q}{m d T}$
$[\mathrm{S}]=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{MK}}$
$[\mathrm{L}]=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{M}}$
$=\mathrm{L}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}$

$$
[L]=L^{2} \mathrm{~T}^{-2}
$$

11. If the weight of an object at surface of earth is 300 N then find the weight of object at depth $R / 4$ from surface of the earth.
Ans. 225
Sol. $\quad W=m g$
$300=m g_{s}$
for depth

$$
\begin{align*}
g^{\prime} & =g_{s}\left[1-\frac{d}{R}\right] \tag{i}\\
g^{\prime} & =g_{s}\left[1-\frac{R / 4}{R}\right] \\
& =g_{s}[1-1 / 4] \\
g^{\prime} & =\frac{3}{4} g_{s}
\end{align*}
$$

$W^{\prime}=m g^{\prime}$
$\Rightarrow W^{\prime}=m\left(\frac{3}{4} g_{s}\right)$
Using (1) and (2)
$\frac{W^{\prime}}{300}=\frac{3}{4} \Rightarrow W^{\prime}=225$
12. A helium gas having total number of moles $=10$ is kept in an insulated container temperature of gas is given as T. Find out total internal energy of He gas.
Ans. 15 RT
Sol. $\quad U=\frac{f}{2} n R T$
$\Rightarrow \frac{3}{2}(10) \mathrm{RT} \quad=15 \mathrm{RT}$
13. An EM wave is travelling along the x-axis, the equation of electric field is $E=600 \sin (k x-\omega t)$. Find out intensity of EM wave.
Ans. 477.9 watt/ m^{2}
Sol. $\quad I=\frac{1}{2} \varepsilon_{0} E_{0}^{2} C$
$=\frac{1}{2} \times 8.85 \times 10^{-12} \times(600)^{2} \times 3 \times 10^{8}$
$=\frac{1}{2} \times 8.85 \times 6 \times 6 \times 3=477.9 \mathrm{watt} / \mathrm{m}^{2}$.
14. Two identical conducting shell having same charge are placed at finite distance. The force applied by one conductor on another is 16 N . Now an uncharged identical conducting shell is introduced such that it touch one by one the conducting shell respectively. Find out final coloumb force acting between the conducting spheres.
Ans. 6 N
Sol. $F=\frac{k Q^{2}}{r^{2}}=16 \mathrm{~N}$
When it is touched with first, charge distributed in both the shell

$\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}} \Rightarrow 1$
$\mathrm{Q}_{1}=\mathrm{Q}_{2}=\frac{\mathrm{Q}}{2}$
Now the shell is touched with another

$Q_{1}^{\prime}=\frac{Q}{2}+\frac{Q}{4}=\frac{3 Q}{4}$
$Q_{2}^{\prime}=\frac{3 Q}{4}$
Now force

$F^{\prime}=\frac{k\left(\frac{Q}{2}\right)\left(\frac{3 Q}{4}\right)}{r^{2}}=\frac{3}{8}\left(\frac{k Q^{2}}{r^{2}}\right) \Rightarrow \frac{3}{8} \times 16=6 N$

15. Match the following

List-1	List-2
(A) y axis represents magnetic field. x axis represents distance from centre of axis of wire [$\mathrm{x}<\mathrm{a}$] ($\mathrm{a}=$ radius of wire)	(I)
(B) y axis represents magnetic field. x axis represents distance from centre of axis of wire [$x>a$] ($a=$ radius of wire)	(II)
(C) y axis represents magnetic field. x axis represents distance from centre of solenoid	(III)
(D) $\quad \mathrm{y}$ axis represents magnetic susceptibility. x axis represents intensity of magnetisation	(IV)

Ans. $\mathrm{A} \rightarrow \mathrm{IV}, \mathrm{B} \rightarrow \mathrm{II}, \mathrm{C} \rightarrow \mathrm{III}, \mathrm{D} \rightarrow \mathrm{I}$
Sol. $\quad \mathrm{A} \rightarrow \mathrm{IV}, \mathrm{B} \rightarrow \mathrm{II}, \mathrm{C} \rightarrow \mathrm{III}, \mathrm{D} \rightarrow \mathrm{I}$
Theoretical
16. A bulb is glowing with power equal to 110 W and potential difference 220 V . Find the number of electron flowing per unit second

Ans. $\quad 3.2 \times 10^{18}$
Sol. $\quad P=V I$
$I=\frac{P}{V}$
$I=\frac{110}{220}=\frac{1}{2}$
$\frac{n e}{t}=1$
$\frac{n}{t}=\frac{1}{e}$
$\frac{\mathrm{n}}{\mathrm{t}} \quad \frac{10}{2 \times 1.6 \times 10^{-19}}$
$\frac{\mathrm{n}}{\mathrm{t}}=3.2 \times 10^{18}$
17. For the given circuit. Find ammeter reading, if shunt $=10 \Omega$ and resistance of coil of galvanometer is 240Ω.

Ans. $\quad A=\frac{24}{150}$
Sol. $\quad R_{\text {eq }}$ of $A=\frac{2400}{250}=\frac{48}{5}$
$R_{\text {eq }}$ of $c k t=140.4+\frac{48}{5}$
$=140.4+9.6$
= 150
$i_{b}=\frac{24}{150} \mathrm{~A}$
Reading $A=\frac{24}{150}$
18. If the maximum current is drawn from a LRC circuit of $R=100 \Omega, C=2.5 n F, L=100 H$ then find frequency in rad/sec.
Ans. $2000 \mathrm{rad} / \mathrm{sec}$
Sol. i is max in resonance condition.
$X_{L}=X_{C}$
$\Rightarrow \quad \omega \mathrm{L}=\frac{1}{\omega \mathrm{C}}$
$\Rightarrow \quad \omega^{2}=\frac{1}{\mathrm{LC}}$
$\Rightarrow \quad \omega=\frac{1}{\sqrt{\text { LC }}}$
$\Rightarrow \quad \omega=\frac{1}{\sqrt{100 \times 2.5 \times 10^{-9}}}$
$=\frac{10^{5}}{50}=\frac{1000}{5}$
$\omega=2000 \mathrm{rad} / \mathrm{sec}$.
19. Find out the value of maximum wavelength of hydrogen of paschen series in bhor model.

Ans. $\quad 18.867 \times 10^{-7} \mathrm{~m}$
Sol. we know

$$
\begin{aligned}
& \frac{1}{\lambda}=R_{H} \times z^{2}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right] \\
& \frac{1}{\lambda}=\left[1.09 \times 10^{7}\right] \times(1)^{2}\left[\frac{1}{3^{2}}-\frac{1}{4^{2}}\right] \\
& \frac{1}{\lambda}=0.053 \times 10^{7} \\
& \lambda=18.867 \times 10^{-7} \mathrm{~m}
\end{aligned}
$$

20. Two waves of intensity $I_{1}=4 I$ and $I_{2}=I$ produces interference, find the ratio of maximum and minimum intensity.
Ans. 8 ।
Sol. $\quad I_{\max }=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}$
$(\sqrt{41}+\sqrt{1})^{2}=91$
$I_{\text {min }}=(\sqrt{41}-\sqrt{1})^{2}=1$
$I_{\text {max }}-I_{\min }=9 \mid-I=8 I$
21. The time period of SHM is 3.14 with amplitude 0.06 m and the maximum velocity of particle is $\mathrm{k} \times 10^{-2} \mathrm{~m} / \mathrm{s}$. Find the value of k .
Ans. 12
Sol.
$\omega=\frac{2 \pi}{\mathrm{~T}}=\frac{2 \times \pi}{3.14}=2 \mathrm{rad} / \mathrm{sec}$
$v_{\text {max }}=\omega A=2 \times 0.06=12 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
$K=12$

CHEMISTRY

1. For any reaction $2 P+Q \rightarrow S$
$\Delta \mathrm{H}=400 \mathrm{~kJ} / \mathrm{mol} \& \Delta \mathrm{~S}=0.2 \mathrm{~kJ} / \mathrm{K}$
At what temperature equilibrium is attained?
Ans. (2000K)
Sol. $\mathrm{T}=\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}}=\frac{400}{0.2}=2000 \mathrm{~K}$
2. An electron present in first excite state in H -atom having energy
-3.4 eV . Find its kinetic energy.
Ans. $(3.4 \mathrm{eV})$
Sol. Kinetic energy $=-$ Total energy $=3.4 \mathrm{eV}$
3. Total number of molecules in which central atom is sp2 Hybridised $\mathrm{SiO}_{2}, \mathrm{NH}_{3}, \mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}$
Ans. (3)
Sol. $\quad \mathrm{SO}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{6}$
4.

major product is

(1)

(2)

(3)

(4)

Ans. (1)

Sol.

5. For reaction
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})$
Then the value of $\frac{K_{p}}{K_{C}}$ will be
(1) $\frac{1}{(\mathrm{RT})^{1 / 2}}$
(2) $(R T)^{1 / 2}$
(3) $\frac{1}{\mathrm{RT}}$
(4) RT

Ans. (1)
Sol. $\quad K_{P}=K_{C}(R T)^{\Delta n g}$
$\Delta \mathrm{ng}=-\frac{1}{2}$
$\frac{K_{p}}{K_{C}}=\frac{1}{(R T)^{1 / 2}}$
6. Incorrect statement for But-2-ene.
(1) If form two stereo isomer
(2) Trans form is more stable than Cis
(3) Dipole - moment of Trans $>$ Cis
(4) Melting point of Trans > Cis

Ans. (3)
Sol. cis isomer has more dipole moment than trans isomer, because it has 2 similar groups on same size of double bond.

trans-2-butene

cis-2-butene
7. Correct increasing order of no. of unpaired electron

Sc, Ti, Cr, Mn, V
(1) $\mathrm{Cr}>\mathrm{V}>\mathrm{Mn}>\mathrm{Ti}>\mathrm{Sc}$
(2) $\mathrm{Mn}>\mathrm{Cr}>\mathrm{V}>\mathrm{Ti}>\mathrm{Sc}$
(3) $\mathrm{Cr}>\mathrm{Mn}>\mathrm{V}>\mathrm{Ti}>\mathrm{Sc}$
(4) $\mathrm{Cr}>\mathrm{Mn}>\mathrm{Ti}>\mathrm{V}>\mathrm{Sc}$

Ans. (3)
Sol. $\mathrm{Cr}>\mathrm{Mn}>\mathrm{V}>\mathrm{Ti}>\mathrm{Sc}$
8.

$\bigcirc \xrightarrow[\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}]{\text { Con. } \mathrm{HNO}_{3}}(\mathrm{X}) \xrightarrow[\mathrm{Fe}]{\mathrm{Br}_{2} \text { (excess) }}(\mathrm{Y})$; (X) and (Y) are respectively-
(1)
 and

(2)
 and

(3)

(4)

and

Ans. (1)

Sol.

9. $\mathrm{R}-\mathrm{COOH} \xrightarrow[\substack{\text { (ii) } \mathrm{P} . \mathrm{C} . \mathrm{C} \\ \text { (ii) } \\ \text { (iv) } \mathrm{H}_{3} \mathrm{O}^{+}}]{\text {(i) } \mathrm{LAlH}_{4}}$ major product (x) is
(1) $\mathrm{R}-\mathrm{H}$
(3)

(2) $\mathrm{R}-\mathrm{CHO}$
(4) $\mathrm{R}-\mathrm{CH}_{2}-\mathrm{COOH}$

Ans. (3)

Sol.

10. Among the $\mathrm{VO}_{2}^{-}, \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{MnO}_{4}^{-}$, find the magnetic moment of compound having least oxidizing power.

Ans. (3)
Sol. Oxidising power order $\rightarrow \mathrm{MnO}_{4}^{-}>\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}>\mathrm{VO}_{2}^{-}$
VO_{2}^{-}have least oxidizing strength
0.5 of V in $\mathrm{VO}^{-} \quad \mathrm{x}+2(-2)=-1$
unpaired $\overline{\mathrm{e}}=2 \quad \mathrm{x}=+3$
$\mu=2.87 \mathrm{Bm}$.
11. Correct increasing order of wavelength of following metals $\mathrm{Li}, \mathrm{Cs}, \mathrm{Rb}, \mathrm{K}$
(1) $\mathrm{Li}>\mathrm{Cs}>\mathrm{Rb}>\mathrm{K}$
(2) $\mathrm{Rb}>\mathrm{K}>\mathrm{Li}>\mathrm{Cs}$
(3) $\mathrm{Li}>\mathrm{Cs}>\mathrm{K}>\mathrm{Rb}$
(4) $\mathrm{Cs}>\mathrm{Li}>\mathrm{Rb}>\mathrm{K}$

Ans. (2)
Sol. increasing order of wavelength $\rightarrow \mathrm{Rb}>\mathrm{K}>\mathrm{Li}>\mathrm{Cs}$
12. Salt $\xrightarrow{\mathrm{AgNO}_{3}}$ yellow ppt $\xrightarrow{\mathrm{NH}_{4} \mathrm{OH}}$ insoluble Salt may contain anion -
(1) I^{-}
(2) Br^{-}
(3) Cl^{-}
(4) F^{-}

Ans. (1)
Sol. Yellow ppt = Agl
Therefore, salt contain I^{-}
13. For the first order reaction
$A+B \rightarrow C$
$P \rightarrow Q$
The ratio of half life is $\frac{1}{2}$ find $\frac{t_{2 / 3}}{t_{4 / 5}}$ for both reaction

Ans. (0.34)

Sol. $\frac{t_{2 / 3}}{t_{4 / 5}}=\frac{\frac{2.303}{k_{1}} \log 3}{\frac{2.303}{k_{2}} \log 5}=\frac{k_{2}}{k_{1}} \frac{\log 3}{\log 5}=\frac{k_{2}}{k_{1}} \frac{\log 3}{\log 5}\left[\frac{k_{2}}{k_{1}}=\frac{\left(t_{1 / 2}\right)_{1}}{\left(t_{1 / 2}\right)_{2}}=\frac{1}{2}\right)=0.34$
14. For 3 M aq NaCl solution ($\mathrm{d}=1.25 \mathrm{gm} / \mathrm{ml}$) calculate molality?
(1) 2.17
(2) 2.79
(3) 3.7
(4) 3.17

Ans. (2)
Sol. $\quad m=\frac{3}{(1250-3 \times 58.5) / 1000}=\frac{3}{1.0745}=2.79$
15. Number of Carbocation which is not Stabilised by Hyper Conjugation

Ans. (4)
Sol. B,D,E,F
16. Choose correct statement

Statement-I: PCl_{5} and BrF_{5} are $\mathrm{sp}^{3} \mathrm{~d}$ hybridised.
Statement-II: SF_{6} and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ are $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridised.
(1) Both statements are correct.
(2) Both statements are incorrect
(3) Only statement-I is correct
(4) Only statement-II is correct

Ans. (2)
Sol. Both statement are incorrect.
17.
 Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}+$ Conc. HNO_{3} $(X) \xrightarrow[\mathrm{FeBr}_{3}]{\mathrm{Br}_{2}(2 \mathrm{eq})}(Y) ; \ln [Y]$,
ratio of oxygen and Bromine is $\mathrm{n} \times 10^{-1}$, then find out the value of (n) -
Ans. (15)

Sol.

18.

In $100 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}, \mathrm{x} \times 10^{-3} \mathrm{ml}$ of $\mathrm{EtOH}(\mathrm{d}=0.8 \mathrm{~g} / \mathrm{ml})$ is added and
following graph is observed x is
$\left(\mathrm{K}_{\mathrm{f}}\right)_{\mathrm{H}_{2} \mathrm{O}}=1.86 \mathrm{~K}-\mathrm{kg} / \mathrm{mol}$

Ans. (7728 ml)
Sol. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \cdot \mathrm{m}$
$2.5=1.86 \times \frac{\mathrm{x} \times 10^{-3} \times 0.8 \times 46}{0.1}$
$x=7728.495 \simeq 7728 \mathrm{ml}$
19. Rate of E.A.S.R is for given compound
(I)

(II)

(III)

(IV)

(1) I $>$ III $>$ II $>$ IV
(2) I $>$ II $>$ III $>$ IV
(3) IV $>$ III $>$ I $>$ II
(4) I $=$ III $>$ II $>$ IV

Ans. (2)

Sol.

20. Find out the shortest wavelength of paschen series for H -atom
(1) $9 / \mathrm{R}$
(2) $16 / \mathrm{R}$
(3) $144 / 7 \mathrm{R}$
(4) $7 R / 144$

Ans. (1)
Sol. $\frac{1}{\lambda}=R \cdot Z^{2}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$
$\frac{1}{\lambda}=\mathrm{R} \cdot(1)^{2}\left[\frac{1}{(3)^{2}}-\frac{1}{(\infty)^{2}}\right]$
$\frac{1}{\lambda}=R\left(\frac{1}{9}\right)$
$\lambda=\frac{9}{R}$
21. Correct statement about enzymes.
(1) Enzyme is bio catalyst
(2) Enzyme are non specific for different reaction
(3) Most of the enzyme are globular protein.
(4) Enzyme oxidase interconvert maltose into Glucose

Ans. (2)
Sol. 1,3
22. Match the column -

Reaction

(A) $\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}$
(B) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$
(C) $\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{2}^{-}+\mathrm{NO}_{3}^{-}$
(D) $\mathrm{PbCO}_{3} \rightarrow \mathrm{PbO}+\mathrm{CO}_{2}$

Name

(P) Decompostion
(Q) Displacement
(R) Combination
(S) Disproportionation
(1) $A \rightarrow Q ; B \rightarrow S ; C \rightarrow R ; D \rightarrow P$
(2) $A \rightarrow P ; B \rightarrow R ; C \rightarrow S ; D \rightarrow Q$
(3) $A \rightarrow Q ; B \rightarrow R ; C \rightarrow S ; D \rightarrow P$
(4) $A \rightarrow P ; B \rightarrow S ; C \rightarrow R ; D \rightarrow Q$

Ans. (3)
Sol. (P) Decompostion, $\mathrm{PbCO}_{3} \rightarrow \mathrm{PbO}+\mathrm{CO}_{2}$
(Q) Displacement, $\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}$
(R) Combination, $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$
(S) Disproportionation, $\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{2}{ }^{-}+\mathrm{NO}_{3}{ }^{-}$
23. How can we convert electrochemical cell into electrolytic cell
(1) By changing electrodes
(2) By reversing movement of ions in salt bridge
(3) By applying opposite lower potential
(4) By applying opposite higher potential

Ans. (4)
Sol. By applying opposite higher potential.
24. In $14^{\text {th }}$ group of periodic table, find correct option
(A) Covalent radius decreases down the group
(B) Down the group $p \pi-p \pi$ bond strength decreases
(C) Electronegativity decreases down the group
(D) Carbon do not show negative oxidation state
(1) A, B, C
(2) A, B, C, D
(3) B, C
(4) B, C, D

Ans. (3)
Sol. (B) Down the group $p \pi-p \pi$ bond strength decreases
(C) Electronegativity decreases down the group
25. IUPAC name of $\left[\mathrm{PtBr}_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$
(1) Dibromido(trimethylphosphine)platinum(II)
(2) Dibromido(trimethylphosphine)platinum(IV)
(3) Dibromido(trimethylphosphine)platinate(IV)
(4) (trimethylphosphine)Dibromidoplatinum(IV)

Ans. (1)
Sol. Dibromido(trimethylphosphine)platinum(II)

