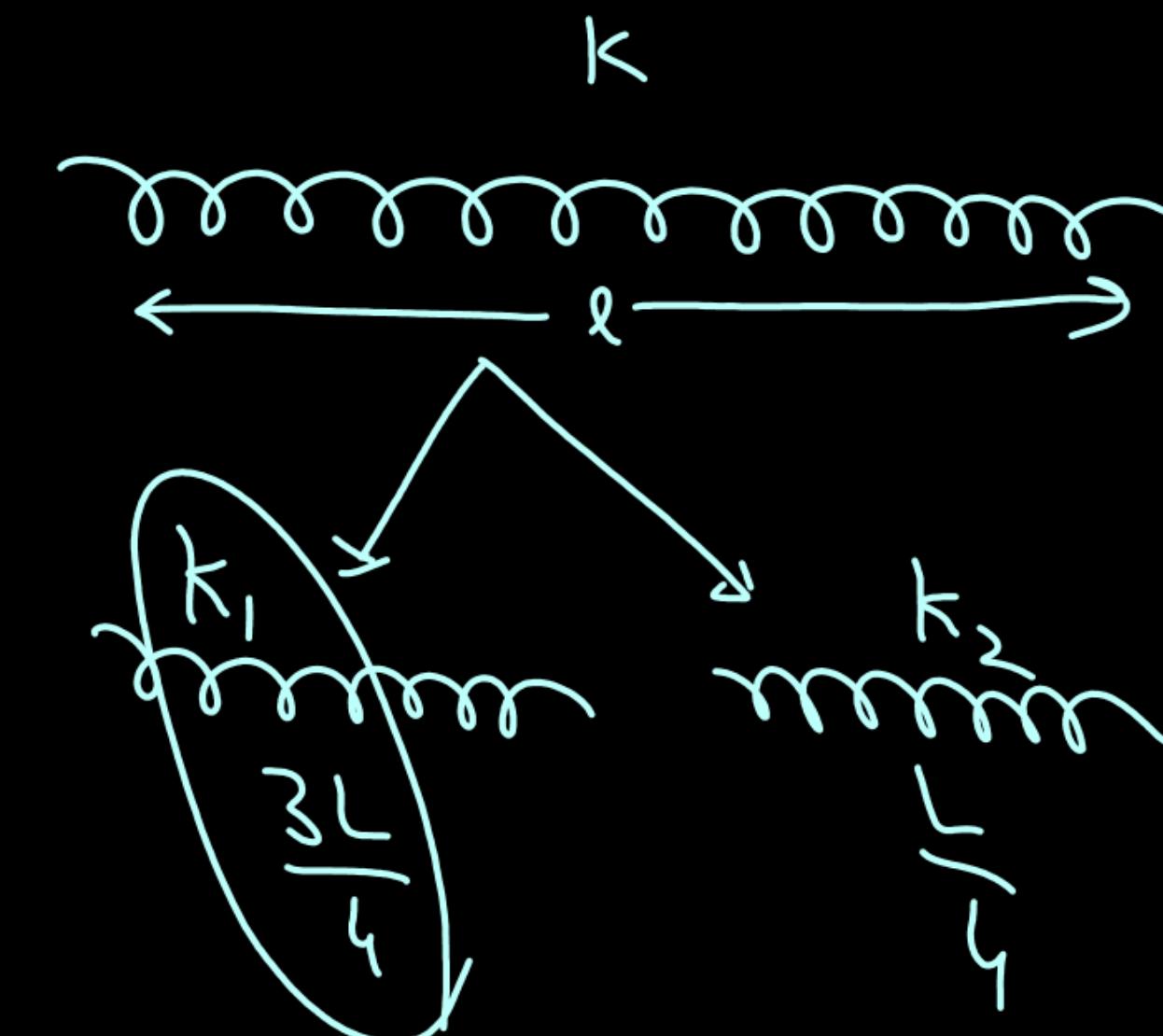


JEE MAINS 2026 PAPER SOLUTION

24 JAN, SHIFT 1

Physics


Q) A spring of stiffness $k = \underline{15 \text{ N/m}}$ is cut into a ratio of 3: 1. Find the spring constant of smaller length spring thus formed.

~~(A) 60 N/m~~ (B) 45 N/m
 (C) 50 N/m (D) 15 N/m

$$kl = k \frac{l}{4}$$

$$k_2 = 4k = 60 \text{ N/m}$$

Ans. (A)

Q) EM waves and their source are given

Column-I

- (a) X-rays
- (b) Infrared Rays
- (c) Microwaves
- (d) Radio waves

Column-II

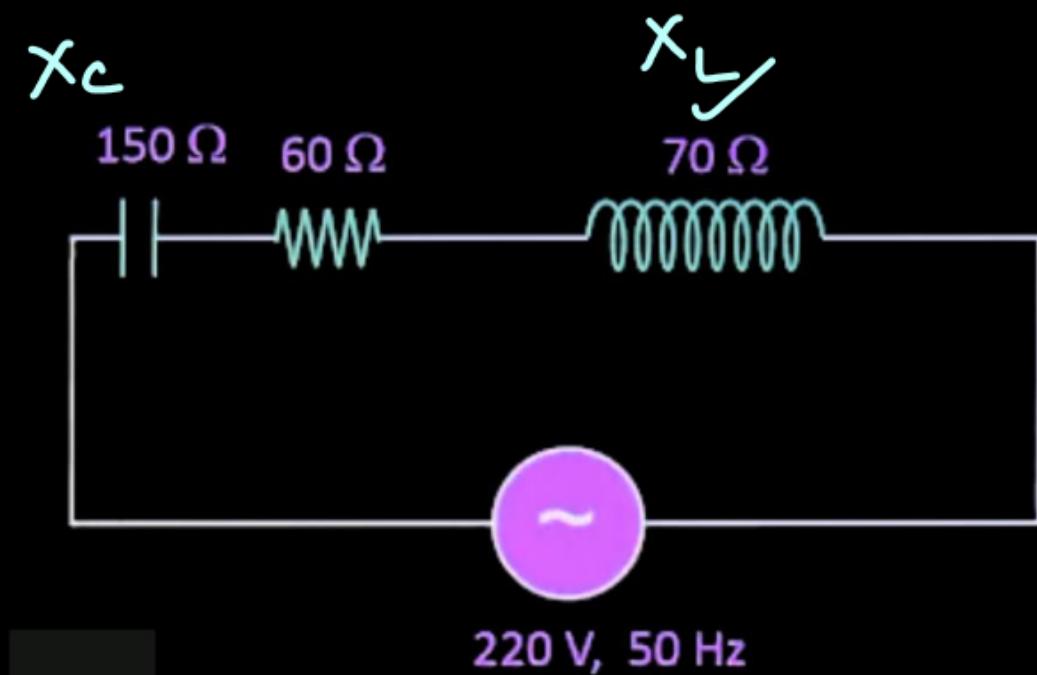
- (p) Hot bodies and molecules
- (q) Oscillatory current in Atenas
- (r) Magnetron
- (s) Fast moving electrons striking a metal plate

~~(A) a-p, b-s, c-r, d-q~~
~~(C) a-s, b-p, c-s, d-q~~

~~(B) a-s, b-p, c-r, d-q~~
~~(D) a-s, b-r, c-p, d-q~~

Ans. (B)

Q) A particle is projected with an initial velocity at an angle of 45° to the horizontal. It reaches its maximum height at $t = 2\text{s}$ and passes the top of a building at $t = 3\text{s}$ after projection. Find the height of the building.


(A) 10 m (B) 15 m (C) 20 m (D) 25 m

Ans. (B)

Q) For the given ac circuit, find the power factor.

(A) $4/5$
 (B) ~~$3/5$~~
 (C) $4/3$
 (D) $3/4$

$$\cos \phi = P.f = \frac{R}{Z}$$

$$= \frac{60}{\sqrt{(80)^2 + (60)^2}} = \frac{60}{100} = 3/5$$

Ans. 0

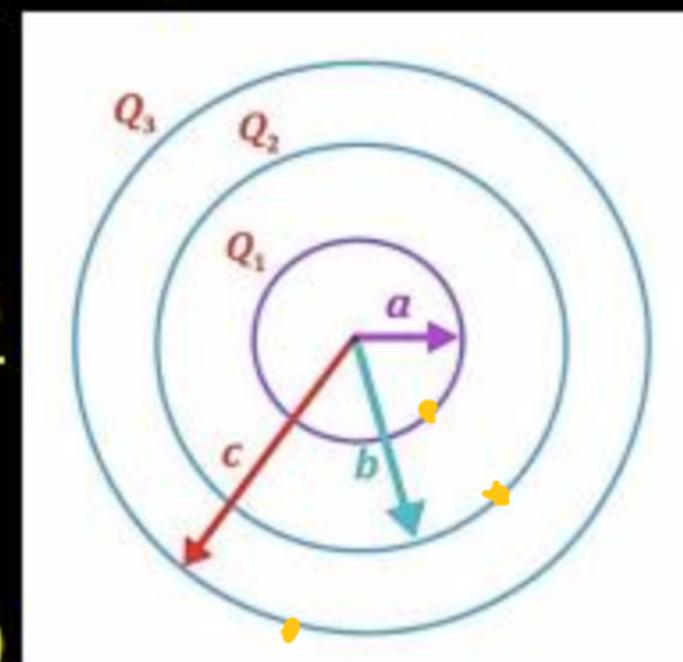
$$P.f =$$

Q) A voltmeter of 400 W resistance is in parallel with 100 W resistor. And the combination is connected with 100 W resistor and a battery of 9 volt in series as shown. Find the reading of voltmeter.

(A) 3 volts
 (B) 4 volts
 (C) 5 volts
 (D) 6 volts

~~(B) 4 volts~~
~~(D) 6 volts~~

$$\frac{400 \times 100}{400 + 100} = 80 \Omega$$

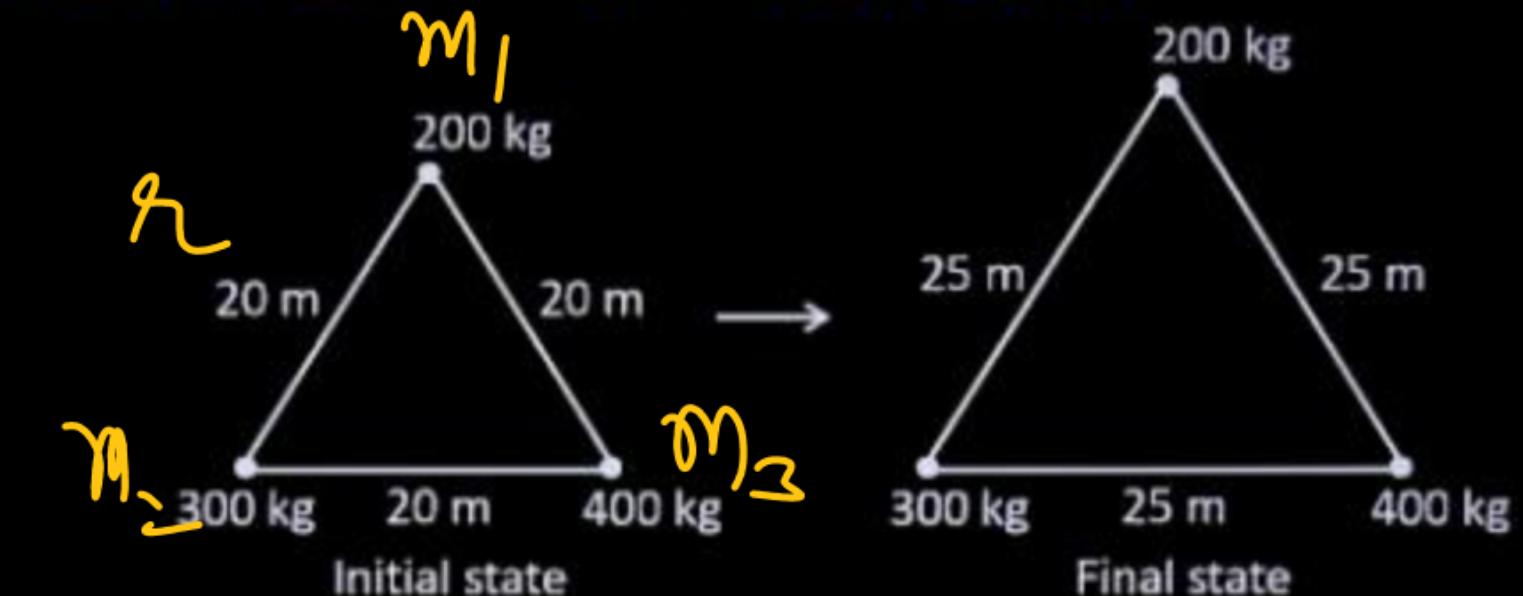

$$\frac{9}{180} = \frac{1}{20} \text{ A}$$

$$\Delta V = \frac{1}{20} \times 80 = 4 \text{ V}$$

Ans. (B)

Q) Three uniformly concentric charged shells are kept as shown. Find potential of each shell.

- (A) $V_A = \frac{kQ_1}{a} + \frac{kQ_2}{b} + \frac{kQ_3}{c}$, $V_B = \frac{k(Q_1+Q_2+Q_3)}{b}$, $V_C = \frac{k(Q_1+Q_2+Q_3)}{c}$
- (B) $V_A = \frac{kQ_1}{a} + \frac{kQ_2}{b} + \frac{kQ_3}{c}$, $V_B = \frac{k(Q_1+Q_2)}{b} + \frac{kQ_3}{c}$, $V_C = \frac{k(Q_1+Q_2+Q_3)}{c}$
- (C) $V_A = \frac{kQ_1}{a} + \frac{k(Q_2+Q_3)}{c}$, $V_B = \frac{k(Q_1+Q_2)}{b} + \frac{kQ_3}{c}$, $V_C = \frac{k(Q_1+Q_2+Q_3)}{c}$
- (D) $V_A = \frac{kQ_1}{a} + \frac{kQ_2}{b} + \frac{kQ_3}{c}$, $V_B = \frac{k(Q_1+Q_2)}{a} + \frac{kQ_2}{b}$, $V_C = \frac{k(Q_1+Q_2+Q_3)}{c}$


$$\frac{k(\vartheta_1 + \vartheta_2) + k\vartheta_3}{c}$$

Ans. (B)

$$\frac{k(\vartheta_1 + \vartheta_2 + \vartheta_3)}{c}$$

Q) Find the work done. (Given: $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$)

- (A) $1.7342 \times 10^{-7} \text{ J}$
- (B) $1.6253 \times 10^{-7} \text{ J}$
- (C) $2.5232 \times 10^{-7} \text{ J}$
- (D) $6.6325 \times 10^{-7} \text{ J}$

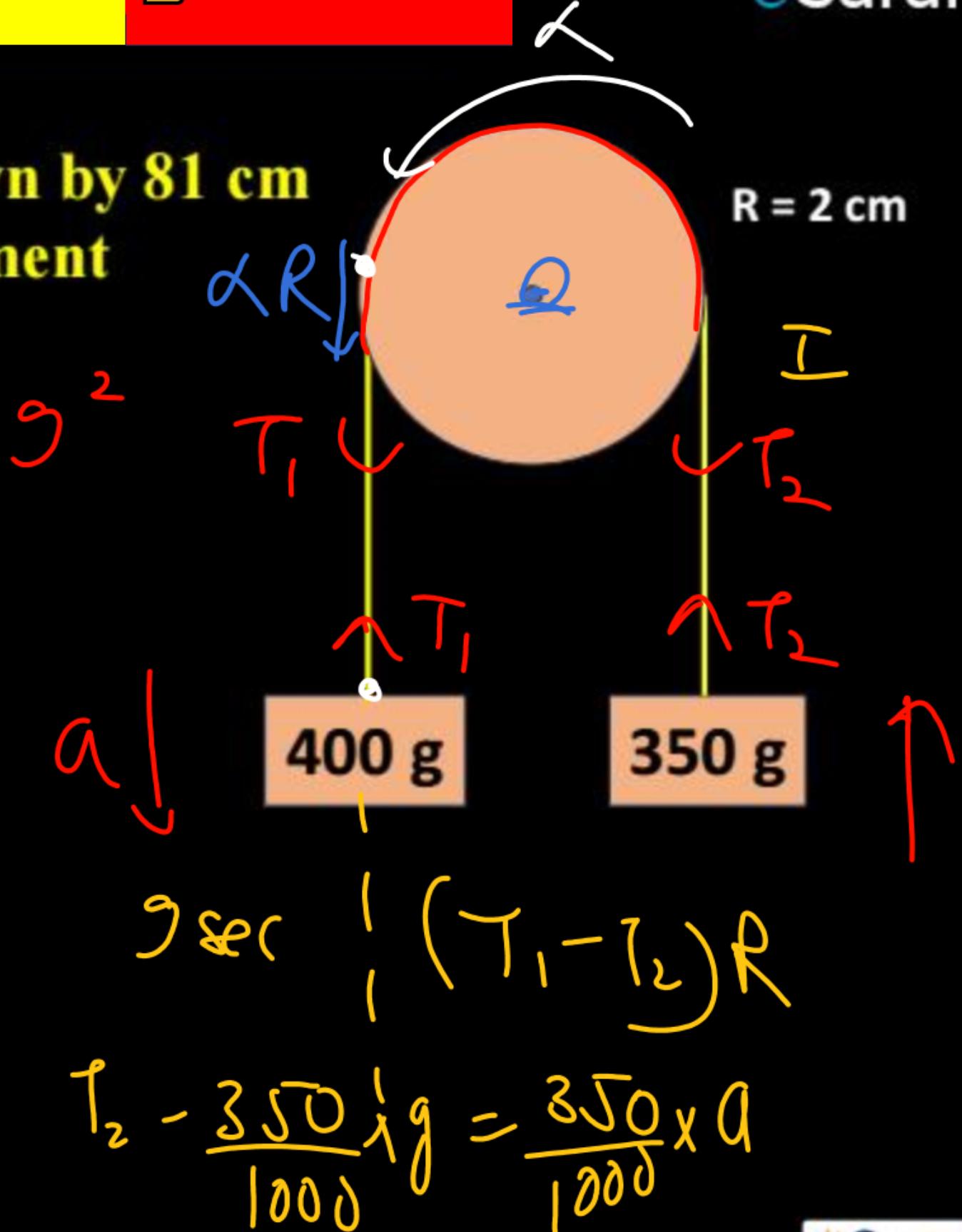
$$W_{\text{ext}} = U_f - U_i$$

$$U_i = -\frac{G m_1 m_2}{\xi} - \frac{G m_1 m_3}{\xi} - \frac{G m_2 m_3}{\xi}$$

Ans. (A)

$$U_f =$$

Q) On releasing the system 400 g mass fall down by 81 cm in 9s, then determine the moment of inertia of pulley


$$a = \alpha R$$

$$\alpha = \checkmark$$

$$(T_1 - T_2)R = I\alpha$$

Ans. 0

$$\frac{h\omega}{100} \times g - T_1 = \frac{h\omega}{100} \times a$$

$$T_2 - \frac{350}{1000} \times g = \frac{350}{1000} \times a$$

Q) In a spherical distribution potential is given by $V = ar^2 + b$. Determine the charge present in sphere of radius R .

$$\frac{P}{\epsilon_0} = \frac{1}{r^2} \frac{\partial}{\partial r} (-2a\vec{r}^2) \quad V = ar^2 + b$$

$$E = -\frac{\partial V}{\partial r} = -2a\vec{r}$$

$$\frac{P}{\epsilon_0} = -6a$$

$$P = -6a\epsilon_0$$

$$\frac{P}{\epsilon_0} = \frac{1}{r^2} \frac{\partial}{\partial r} (E r^2)$$

Ans. 0

$$q = \int_0^R P 4\pi r^2 dr$$

Q) A dipole is placed in uniform magnetic field $B = 800$ gauss at an angle 30° then it experiences the torque of 16×10^{-3} N – m. Find the work done in slowly moving the dipole from stable equilibrium to unstable equilibrium.

(A) 64×10^{-3} J
 (C) 24.5×10^{-3} J

(B) 5×10^{-3} J
 (D) 7.6×10^{-3} J

$$1 T = 10^4 \text{ Gauss}$$

$$U = -M B \cos \theta$$

$$U_f - U_i$$

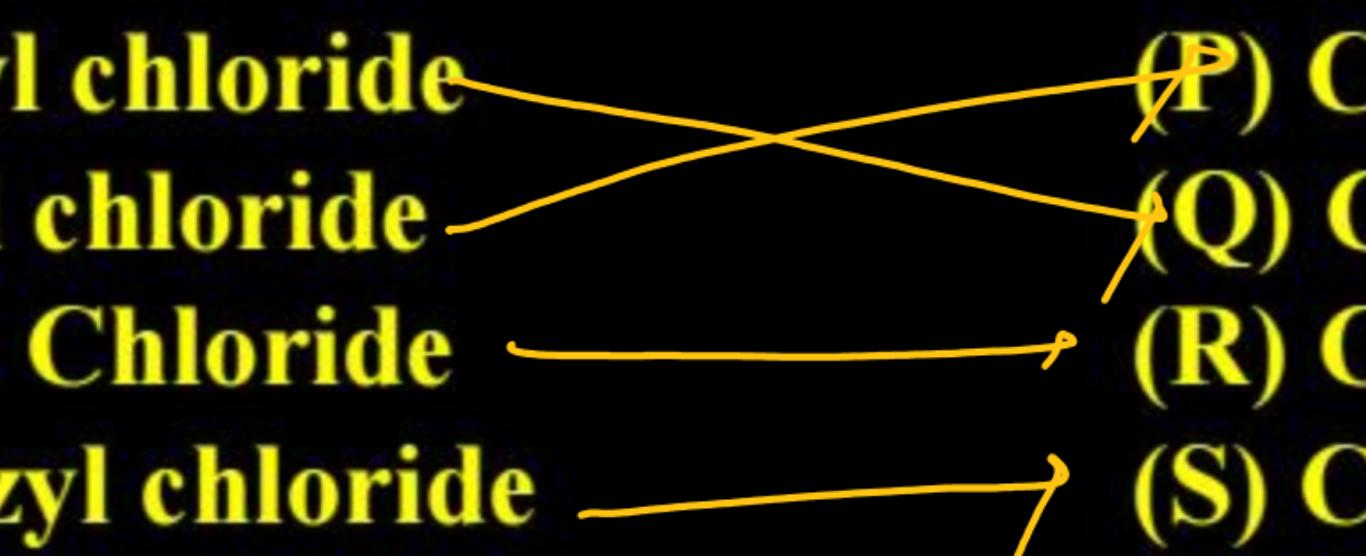
Ans. (A)

$$U_i = -M B \cos 0$$

$$U_f = -M B \cos 180$$

$$U_f = M B \cos 180$$

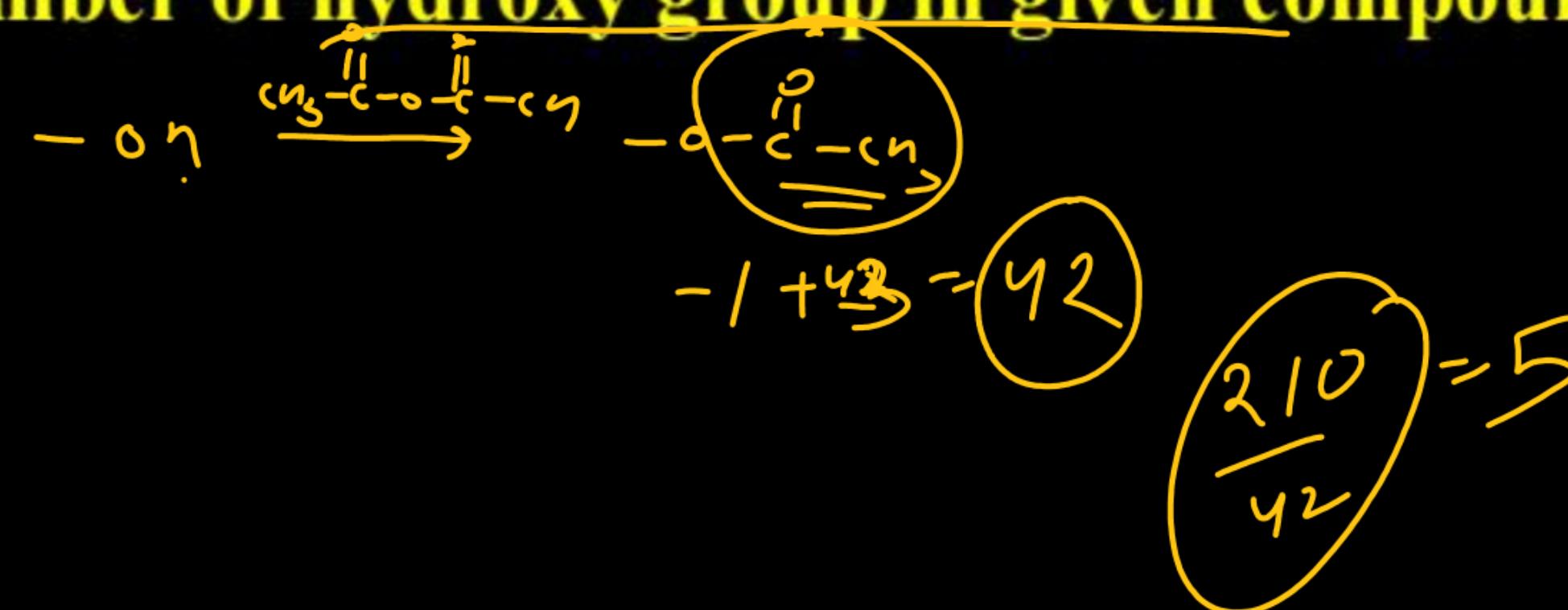
Chemistry


Q) Match list-I with list-II

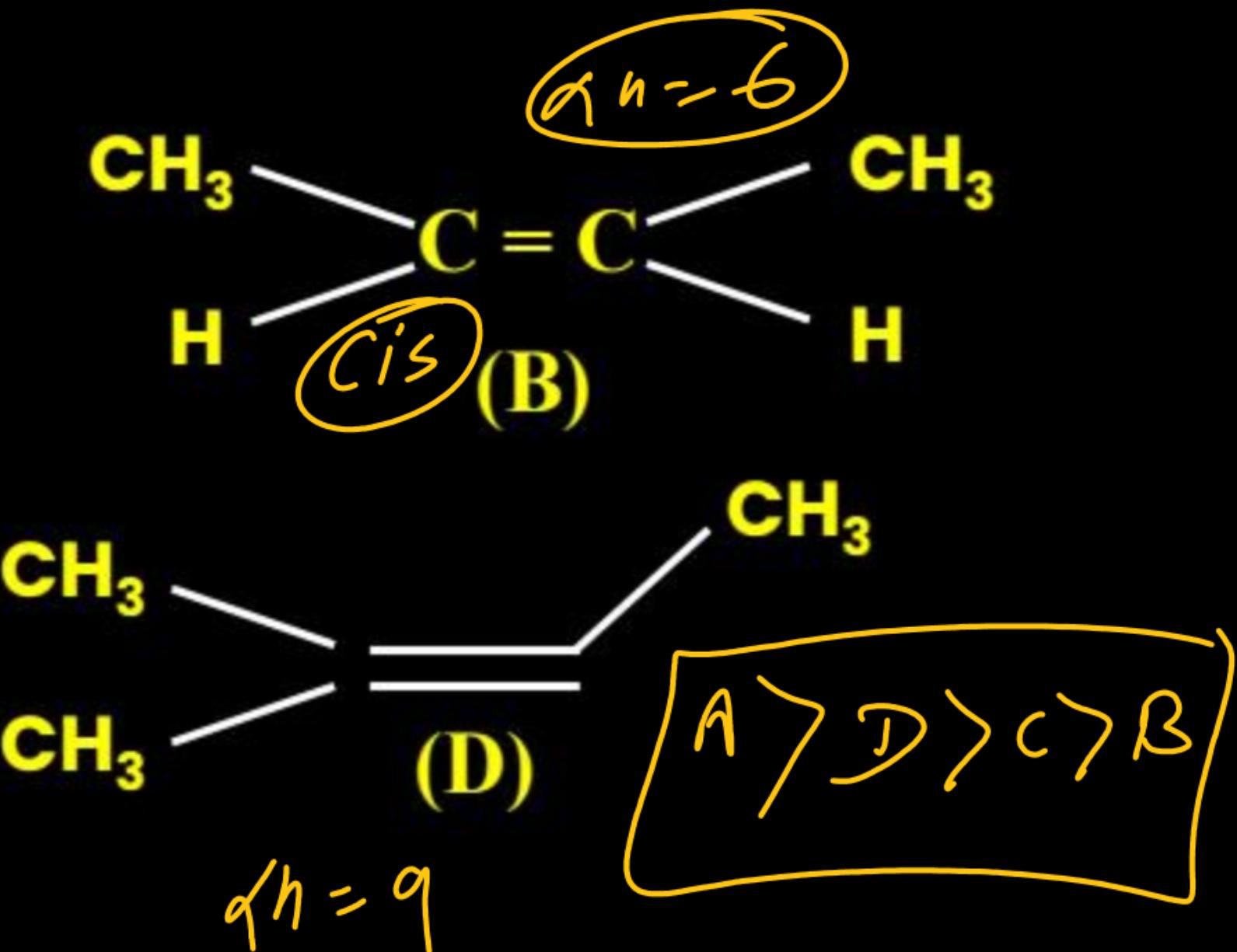
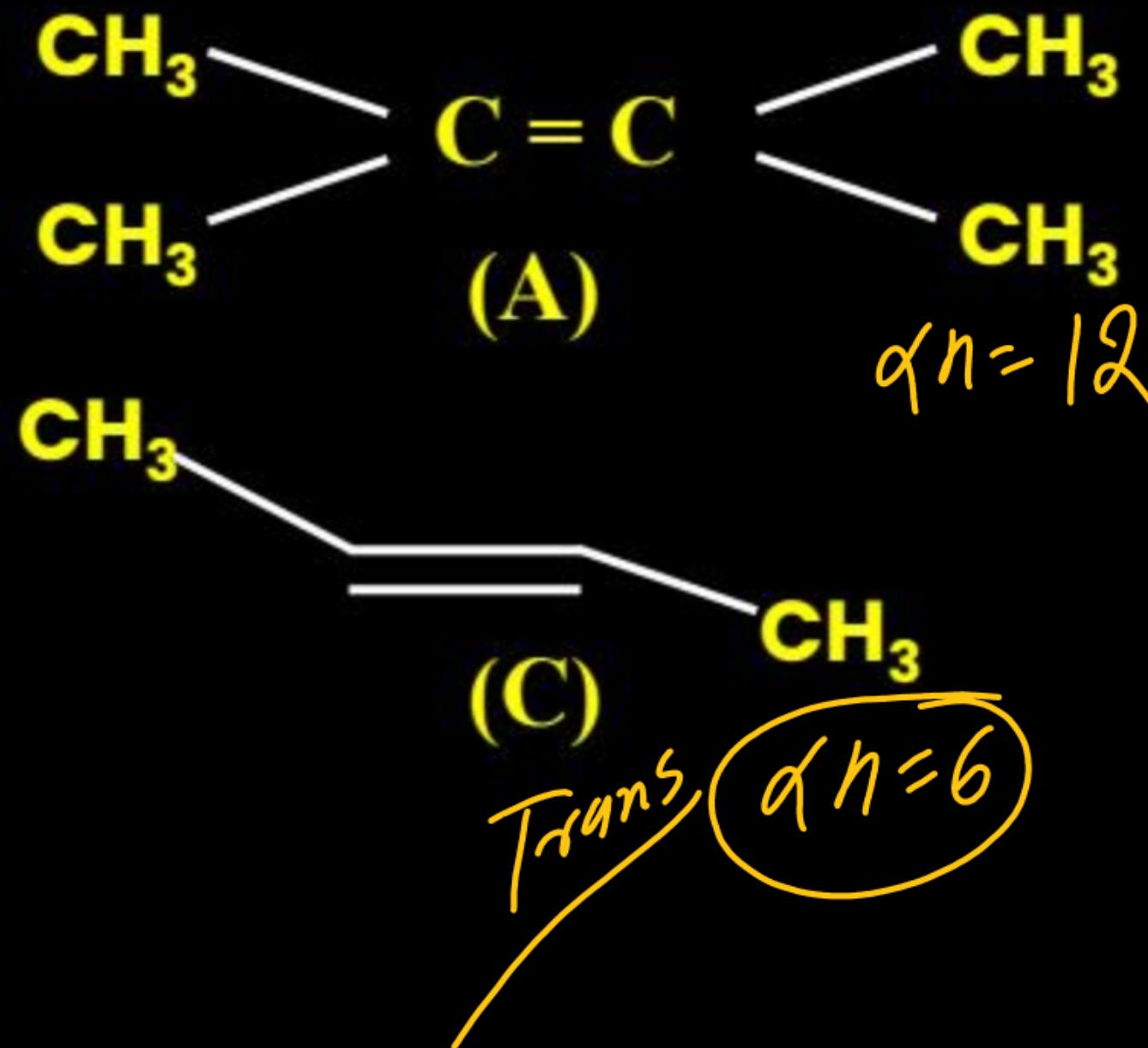
List-I

- (A) Vinyl chloride
- (B) Allyl chloride
- (C) Aryl Chloride
- (D) Benzyl chloride

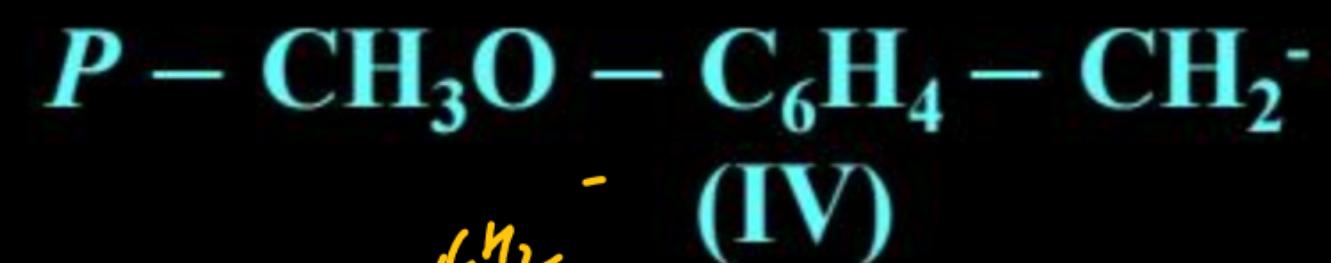
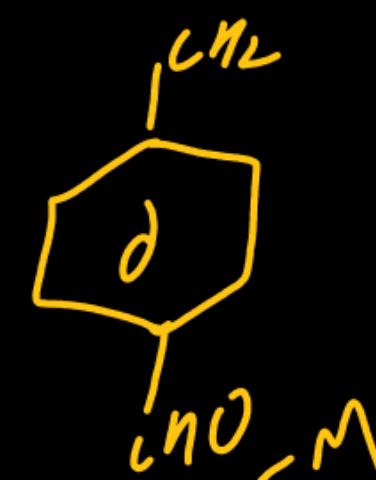
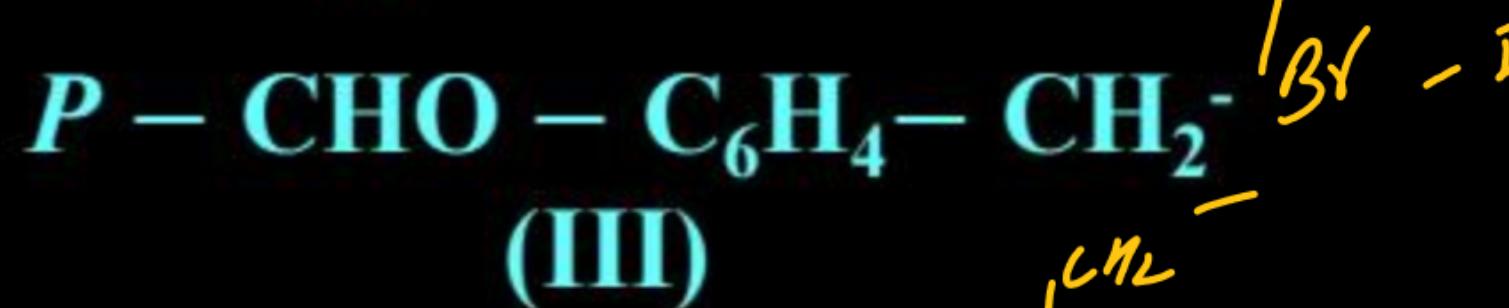
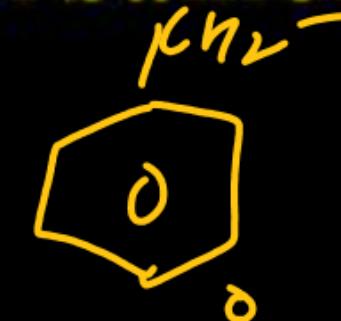
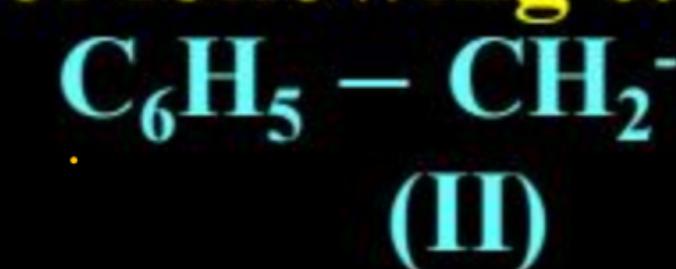
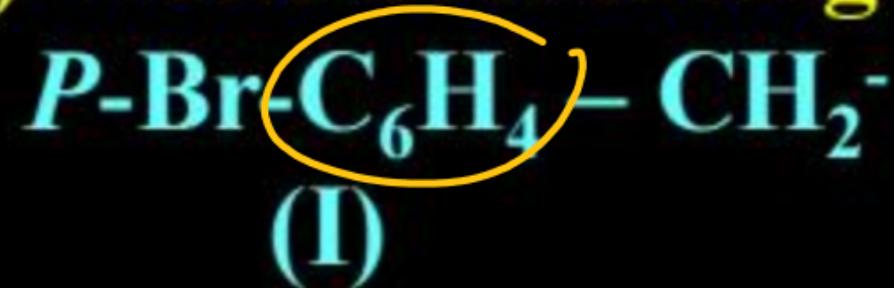
List-II


- (P) $\text{CH}_2 = \text{CH} - \text{CH}_2 - \text{Cl}$
- (Q) $\text{CH}_2 = \text{CH} - \text{Cl}$
- (R) $\text{C}_6\text{H}_5 - \text{Cl}$
- (S) $\text{C}_6\text{H}_5 - \text{CH}_2 - \text{Cl}$

Q) When benzene (70gm) react with nitrating mixture and form product A, which further react with Br_2 in presence of Fe produce B. B on further show reduction with Fe/HCl and after diazotization give C and C on reaction with CuBr/HBr give product D. Find out mass of product D in gm.

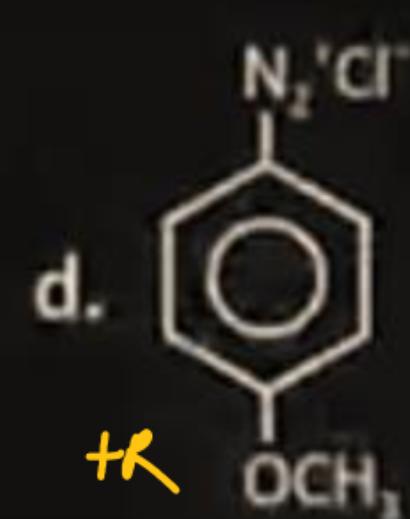
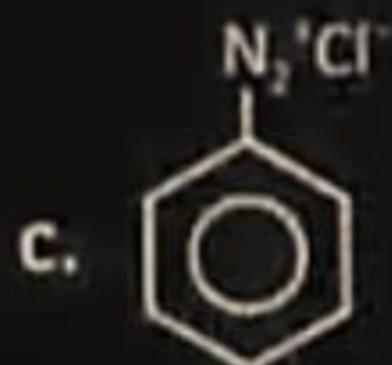
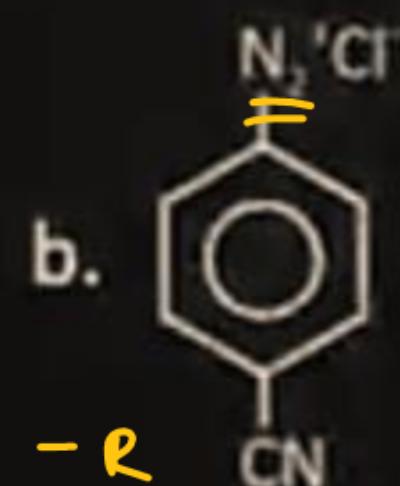
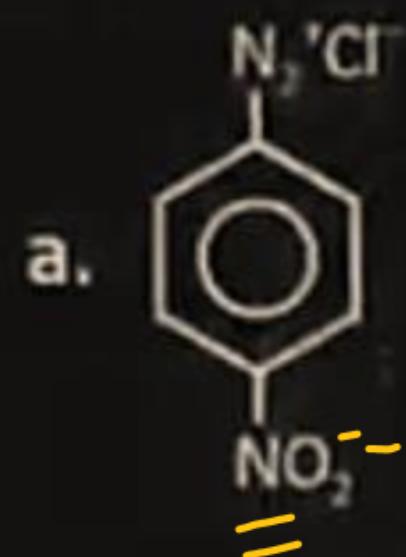



Q) Hydroxy compound react with excess of acetic anhydride give compound X which molecular mass increase by 210 unit then find out number of hydroxy group in given compound

Ans. (5)

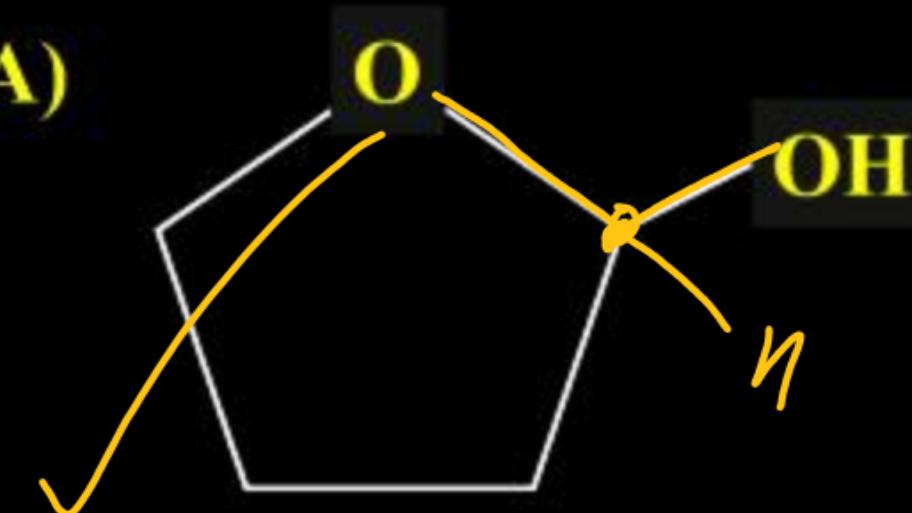
Q) Decreasing order of stability

Q) Write decreasing stability order of following carbanion

3 > 1 > 2 > 4

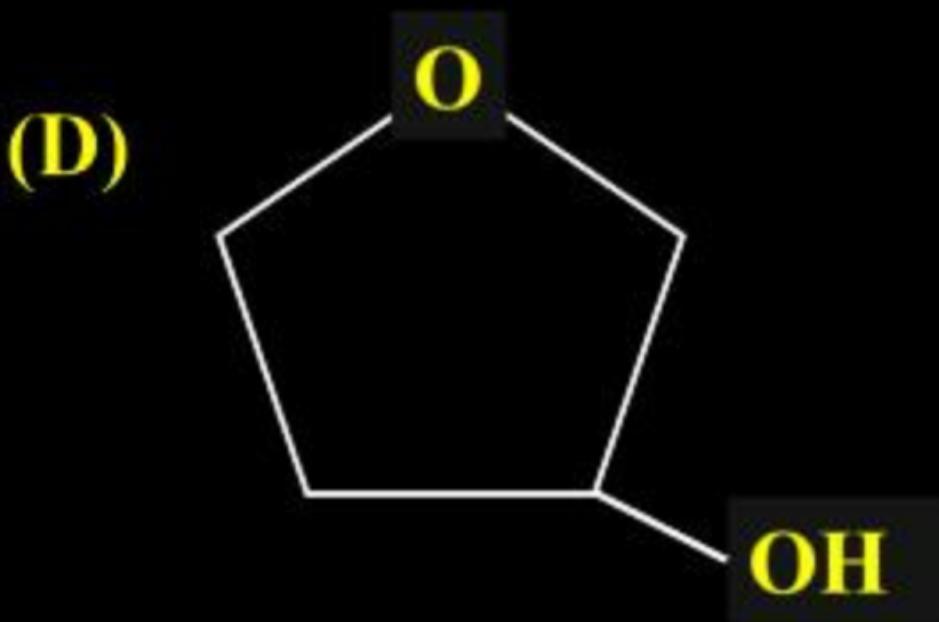
Q) The correct order of stability of following diazonium ions is

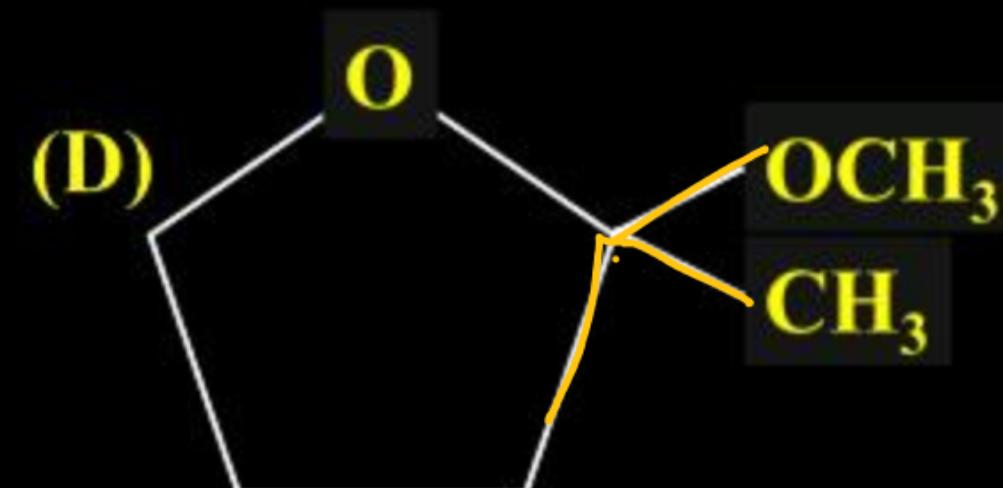


C^+
stability $\propto +R \propto / +n / +I$

$d > c > b > a$

Q) Which of the following will show positive tollens test


(A)

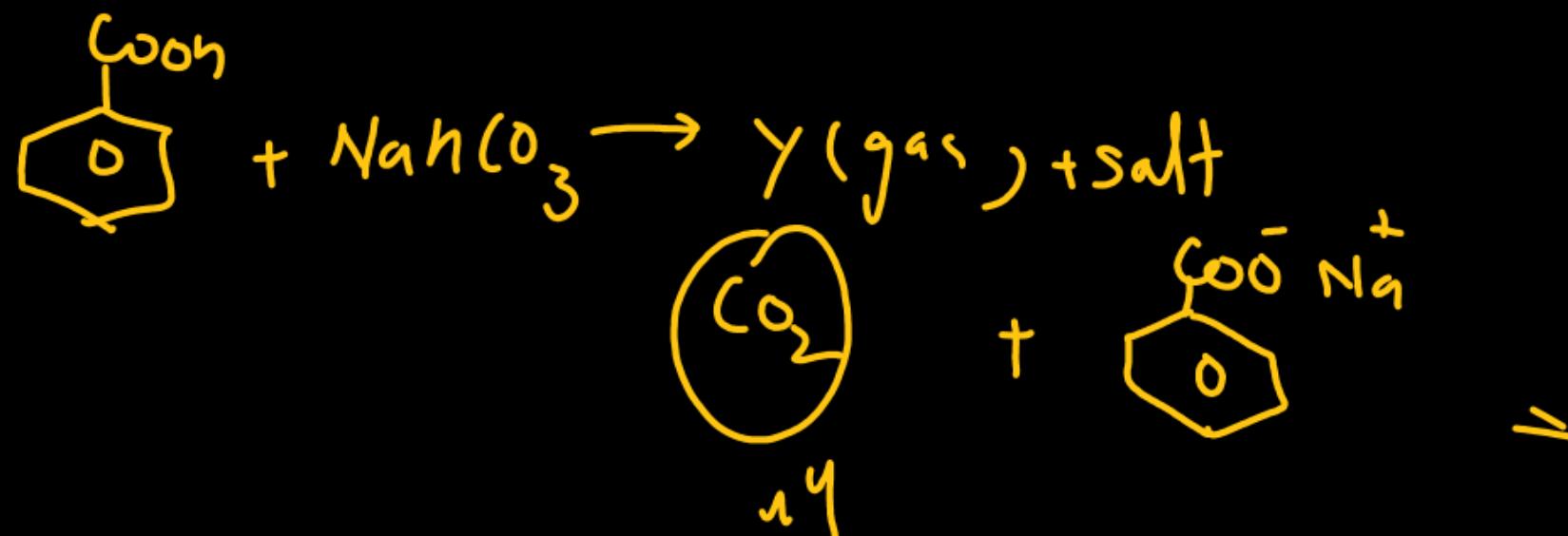

(B)

(D)

(D)

>

Q) In Dumas method, 292 mg of organic compound yields 50 mL $N_2(g)$ at 300 K and 715 mm Hg pressure. Find % of 'N' in organic compound.
 Aqueous tension $i = 15 \text{ mm Hg}$


$$N_2 = \frac{28}{22400} \times \frac{50}{60} \times 100$$

$\frac{P_1 V_1}{T_1} \times \frac{273}{760} = \frac{50 \times 700}{300} \times \frac{273}{760}$

Ans. (18)

Q) Phenol react with Na give gas X and benzoic acid react with NaHCO_3 give gas Y find out molecular mass of X + Y

(A) ~~48~~ 46 (B) 86 (C) 4 (D) 60

Ans. (A)

Q) Two non electrolyte solutes A and B of 0.3 g and 0.9 g respectively are dissolved in 100ml solution. (molar mass of A and B are 30 g / mol and 90g / mol respectively. Calculate of osmotic pressure at 300 K (in atm)

$$\Pi = \frac{n}{V} RT = \frac{n_1 + n_2}{V} RT = \frac{0.2}{1} RT$$

$n_A = \frac{0.3}{30} = 0.01$

$n_B = \frac{0.9}{90} = 0.01$

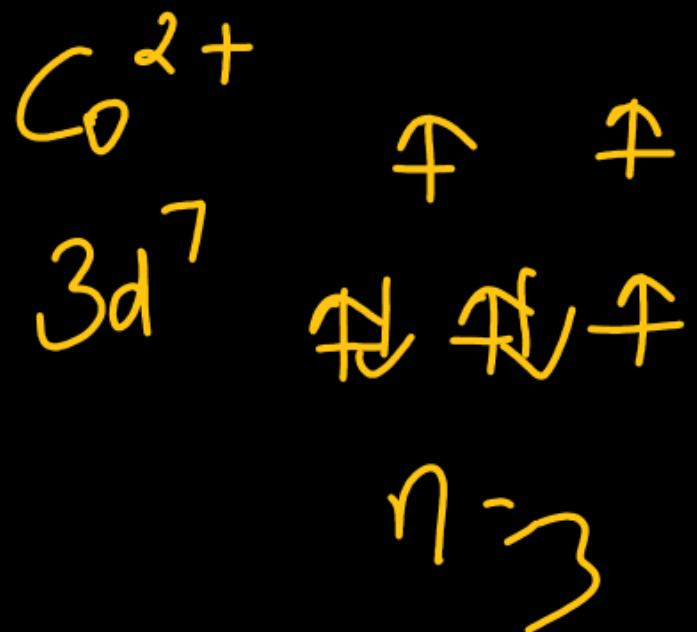
$\therefore 0.01 \Rightarrow 5 \text{ atm}$

Q) In H-like atom ratio of speed in two orbits is 3:2, then ratio of energy is

(A) $5 : 3$ (B) $2 : 1$
~~(C) $9 : 4$~~ (D) $2 : 3$

$$V = 2.18 \times 10^6 \frac{\pi}{\pi} m/s$$

$$E = -13.6 \frac{z^2}{n^2}$$


$$V \propto \frac{1}{n}$$

$$\frac{E_1}{E_2} = \left(\frac{\Omega_2}{\Omega_1}\right)^2 = \left(\frac{3}{1}\right)^2 = 9$$

Q) Which of following compound contains 3 unpaired electrons ?

(A) $[\underline{\text{Co}}\underline{\text{F}}_6]^{4-}$
 (C) $\underline{\text{V}_2}\underline{\text{O}_5}$

(B) $[\underline{\text{Ti}}\underline{\text{F}}_6]^{3-}$
 (D) $[\underline{\text{Fe}}(\underline{\text{CN}})_6]^{3-}$

Q) $\text{K}_2\text{Cr}_2\text{O}_7 + \text{I}^- + \text{H}^+ \rightarrow \text{I}_2$ $\xrightarrow{\text{Nf} = 2 - x}$
 (x = number of moles of e^- exchanged per mol I_2)

$$\text{K}_2\text{Cr}_2\text{O}_7 + \text{S}^{2-} \rightarrow \text{S}$$

$K_2Cr_2O_7 + S \rightarrow S$
 $(y = \text{number of moles of } e^- \text{ exchanged for } 1 \text{ mole of } S)$

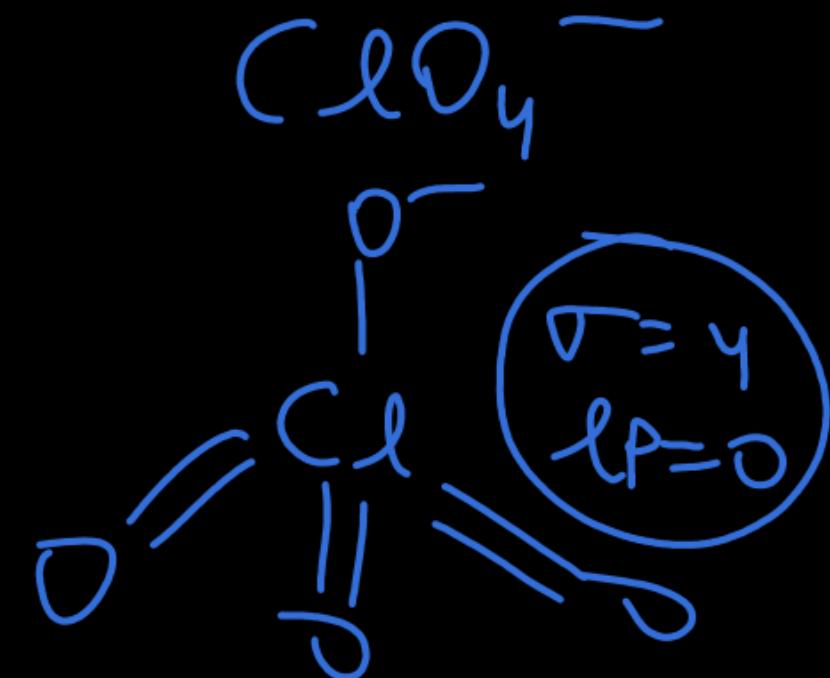
x + y is

(A) 6

(B) 9

(C) 4

(D) 12


Q) Match the column

Column-I

- (A) IF_3
- (B) IF_5
- (C) IF_7
- (D) ClO_4^-

Column-II

- (P) sp^3d^3 , pentagonal bipyramidal
- (Q) sp^3d , T-shaped
- (R) sp^3 , Tetrahedral
- (S) sp^3d^2 , Square pyramidal

A - Q

D - R

B - S

C - P

IF_3 $\sigma = 3$ $lp = 2$ T-shaped

IF_5 $\sigma = 5$ $lp = 1$ Sq. pyramidal

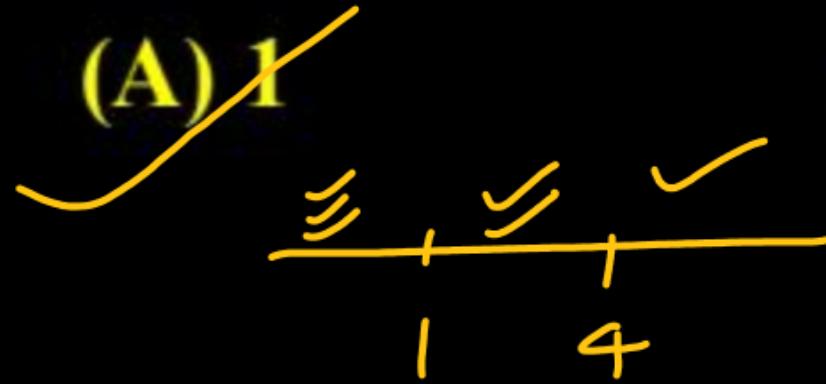
IF_7 $\sigma = 7$ $lp = 0$

Math

Q) The value of $\frac{\sqrt{3}\csc 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}$ is

(A) 12 ~~(B) 64~~ (C) 16 (D) 32

$$\left(\frac{1}{4}\right) \left(\frac{1}{4}\right) = \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{16}$$


$$\begin{aligned} \frac{\sqrt{3}}{\sin 20^\circ} - \frac{1}{\cos 20^\circ} \\ \frac{\sqrt{3} \cos 20^\circ - \sin 20^\circ}{2 \sin 20^\circ \cos 20^\circ} = \frac{2 \left(\frac{\sqrt{3}}{2} \cos 20^\circ - \frac{1}{2} \sin 20^\circ \right)}{\frac{1}{2} \sin 40^\circ} \\ = 4 \left(\frac{\sin(40^\circ)}{\sin 40^\circ} \right) = 4 \end{aligned}$$

Ans. (B)

$$\frac{4}{\frac{1}{16}} = 64$$

Q) The number of solution for $x \in \mathbb{R}, x|x-4| + |x-1| - 2 = 0$

(A) 1

(B) 2

① $x \geq 4$

$$x(x-4) + x - 1 - 2 = 0$$

$$x^2 - 3x - 3 = 0$$

$$x = \frac{3 \pm \sqrt{9+12}}{2} = \frac{3+\sqrt{21}}{2} \times$$

(C) 3

(D) 4

②

$$1 \leq x < 4$$

$$-x^2 + 4x + x - 1 - 2 = 0$$

No soln

$$\frac{3-\sqrt{21}}{2} \times$$

③

$$x < 1$$

$$-x^2 + 9x - x + 1 - 2 = 0$$

No soln

$$= \frac{5+\sqrt{13}}{2} \quad \frac{5-\sqrt{13}}{2}$$

Ans. 0(A)

$$-x^2 + 3x - 1 = 0$$

$$x^2 - 3x + 1 = 0$$

$$x = \frac{3 \pm \sqrt{5}}{2} = \frac{3-\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}$$

$$x = \frac{3-\sqrt{5}}{2} \quad x = \frac{3+\sqrt{5}}{2}$$

Q) Consider an A.P $a_1, a_2 \dots a_n; a_1 > 0, a_2 - a_1 = \frac{-3}{4}, a_n = \frac{1}{4}a_1$ and

$\sum_{i=1}^n a_i = \frac{525}{2}$ then $\sum_{i=1}^{17} a_i$ is equal to $d = -\frac{3}{4}$ $a + (n-1)\frac{-3}{4} = \frac{a}{4}$

(A) 189

~~(B) 238~~

(C) 276

(D) 258

$$\frac{n}{2} \left(2a + (n-1)\left(\frac{-3}{4}\right) \right) = \frac{525}{2}$$

$$n \left(\frac{8a - 8 - 3n + 3}{4} \right) = 525$$

$$n(\cancel{8})(n-1) = \cancel{8}(105)(4)$$

Ans. (B)

$$n(n-1) = 420$$

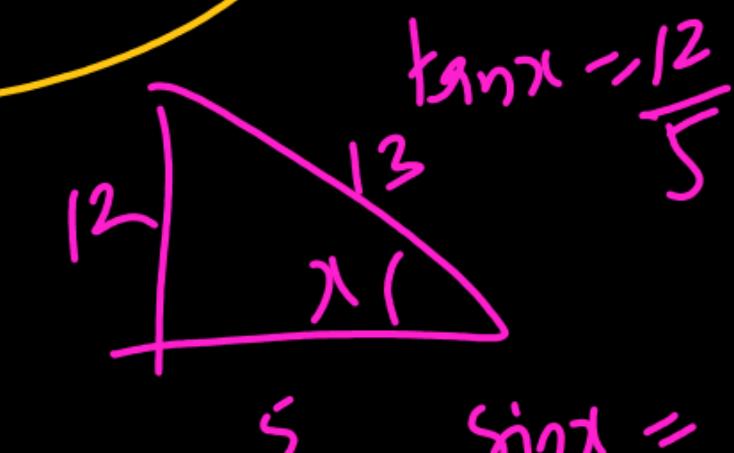
$$\boxed{n=21}$$

$$a=20$$

$$S_{17} = \frac{17}{2} \left(2(20) + 16\left(-\frac{3}{4}\right) \right)$$

$$\frac{17}{2} (28) = 17 \times 14 = 238$$

$$(n-1)\left(-\frac{3}{4}\right) = \frac{-3a}{4}$$


$$a = n-1$$

Q) If $\cot x = \frac{5}{12}$ for some $x \in \left(\pi, \frac{3\pi}{2}\right)$ then

$\sin 7x \left(\cos \frac{13x}{2} + \sin \frac{13x}{2} \right) + \cos 7x \left(\cos \frac{13x}{2} - \sin \frac{13x}{2} \right)$ is equal to

$$\sin \left(7x - \frac{13x}{2} \right) + \cos \left(7x - \frac{13x}{2} \right)$$

$$\sin \frac{x}{2} + \cos \frac{x}{2}$$

$$\sin x = \frac{12}{13}$$

3rd

$$\left(\sin \frac{x}{2} + \cos \frac{x}{2} \right)^2 = 1 + \sin x = 1 - \frac{12}{13} = \frac{1}{13}$$

$$\sin \frac{x}{2} + \cos \frac{x}{2} > \frac{1}{\sqrt{13}}$$

Ans. $\left(\frac{1}{\sqrt{13}} \right)$

$$\sin x = -\frac{12}{13}$$

Q) If $F(t) = \int \frac{1-\sin(\ln t)}{1-\cos(\ln t)} dt$ and $F(e^{\pi/2}) = -e^{\pi/2}$ then $F(e^{\pi/4})$ is:

~~(A) $(-1-\sqrt{2})e^{\frac{\pi}{4}}$~~ $\ln t = x \Rightarrow t = e^x$
 (B) $(1-\sqrt{2})e^{\frac{\pi}{4}}$
 (C) $(1+\sqrt{2})e^{\frac{\pi}{4}}$ $\frac{1}{t} dt = dx$
 (D) $(-2-\sqrt{2})e^{\frac{\pi}{4}}$

$$\int e^x \left(\frac{1-\sin x}{1-\cos x} \right) dx$$

$$\int e^x \left(\frac{1-2\sin x/2 \cos x/2}{2 \sin^2 x/2} \right) dx$$

Ans. (A)

$$\int e^x \left(\frac{1}{2} \left(\cot^2 x/2 - \cot x/2 \right) \right) dx$$

$$\left| \begin{array}{l} e^x \left(-\cot x/2 \right) + C \\ F(t) = -t \cot \left(\frac{\ln t}{2} \right) + C \\ -e^{\pi/2} = -e^{\pi/2} \left(1 \right) + C \\ C = 0 \end{array} \right.$$

$$\left| \begin{array}{l} F(e^{\pi/4}) = -e^{\pi/4} \left(\cot \frac{\pi/4}{2} \right) \\ = -e^{\pi/4} (\sqrt{2} + 1) \end{array} \right.$$

$$\lim_{g(n) \rightarrow 0} \frac{e^{g(n)} - 1}{g(n)} = 1$$

$$Q) f(x) = \frac{e^x(e^{\tan x - x} - 1) + \log(\sec x + \tan x) - x}{\tan x - x}$$

If $f(x)$ is continuous at $x = 0$, then find $f(0)$

$$\lim_{\kappa \rightarrow 0} \frac{e^x(e^{\tan x - x} - 1)}{(\tan x - x)}$$

1

$$\text{Ans. (1.5)} 1 + \frac{1}{2} = 1.5$$

$\sec^n + \sec^2 n$

$$\lim_{\kappa \rightarrow 0} \frac{\sec \kappa - 1}{(\sec \kappa - 1)(\sec \kappa + 1)} = \frac{1}{2}$$

$$+ \lim_{\kappa \rightarrow 0} \frac{\log(\sec \kappa + \tan \kappa) - \kappa}{\tan \kappa - \kappa}$$

$$\lim_{\kappa \rightarrow 0} \frac{1}{\sec \kappa + \tan \kappa} \frac{\sec \kappa (\sec \kappa + \tan \kappa) - 1}{(\sec^2 \kappa - 1)}$$

Q)
$$\int_0^{36} f\left(\frac{tx}{36}\right) dt = 4\alpha f(x)$$

$\frac{x}{36} dt = dd \quad \frac{dx}{36} = dt$ $\int_0^{36} \beta(n) dn = 4\alpha \beta(n)$

$y = n^2 \rightarrow y = \frac{t^2}{x} \quad \alpha = 3 \quad \beta = 4$

$\ln y = \left(\frac{9-\alpha}{\alpha}\right) \ln x + \ln C \quad \frac{9-\alpha}{\alpha} = 2$

If the curve represented by $y = f(x)$ is a standard parabola passing through $(2, 1)$ and $(-4, \beta)$ then find $B^{\alpha} \beta^{\alpha} \quad \alpha^3 = 64$

$\frac{36}{x} \cdot \beta(n) - \frac{36}{x^2} \int_0^x \beta(n) dn = 4\alpha \beta^1(n)$

$\frac{36}{x} y - \frac{36}{x^2} \left(\frac{4\alpha y x}{36} \right) = 4\alpha \frac{dy}{dx}$

$\frac{dy}{dx} = \frac{y}{x} \left(\frac{9-\alpha}{\alpha} \right)$

$\frac{dy}{y} = \int \frac{dx}{x} \left(\frac{9-\alpha}{\alpha} \right)$

Ans. (64)

Q) A bag contains 100 balls in which 10 are defective and 90 are non-defective balls. Find the number of ways to select 8 balls without replacement in which at least 7 balls should be defective?

$$\begin{aligned}
 8 \text{ b} \rightarrow & 7 \text{ D IND} + 8 \text{ D ND} \\
 & 10C_7 \times 90C_1 + 10C_8 \times 90C_0 \\
 = & 120 \times 90 + 45 \times 1 \\
 = & \underline{10845}
 \end{aligned}$$

with Replacement

$$\begin{aligned}
 & 8C_7 \times \left(\frac{1}{10}\right)^7 \left(\frac{9}{10}\right)^1 + \\
 & 8C_8 \times \left(\frac{1}{10}\right)^8 \left(\frac{9}{10}\right)^0
 \end{aligned}$$

Ans. (10845)

$$n = 10$$

$$\bar{x} = 10$$

$$\sigma^2 = 2$$

Q) Consider 10 data such that their mean is 10 and variance is 2. If one of the data α is removed and new data entry β is inserted. Now new mean is 10.1 and new variance is 1.99 then $(\alpha + \beta)$ is equal to

(A) 10 \bar{x}_{new}

~~(B) 20~~

$$\sigma^2_{\text{new}}$$

~~(C) 1~~

~~(D) 2~~

old $\sum n_i = 10 \times 10 = 100$

new $\frac{\sum n_i - \alpha + \beta}{10} = 10.1$

Ans. (B)

$$100 + \beta - \alpha = 101$$

$$\beta - \alpha = 1$$

old $2 = \frac{\sum n_i^2}{10} - 100$

$$1020 = \sum n_i^2$$

new $1.99 = \frac{\sum n_i^2 - \alpha^2 + \beta^2}{10} - (10.1)^2$

$$1040 = 1020 + (\beta^2 - \alpha^2)$$

$$\beta^2 - \alpha^2 = 20$$

$$(\beta + \alpha)(\beta - \alpha) = 20$$

$$\beta + \alpha = 20$$

$$\beta = 10.5$$

$$\alpha = 9.5$$

Q) Consider a sequence 729, 81, 9, 1, $3^6, 3^4, 3^2, 3^0, \dots$

Let P_n = product of first n terms of the given sequence and

$$\sum_{n=1}^{40} (P_n)^{\frac{1}{n}} = \frac{3^{\alpha-1}}{2 \times 3^{\beta}}. \text{ Then the value of } \alpha + \beta \text{ is } \alpha + \beta = 40 + 33 = 73$$

(A) 75

(B) 73

(C) 76

(D) 81

Ans. (B)

$$\sum_{n=1}^{40} 3^{(7-n)} = \frac{3^{\alpha-1}}{2 \cdot 3^{\beta}}$$

$$\Rightarrow 3^7 \left(\frac{1}{3} + \frac{1}{3^2} + \dots + 3^{40-1} \right) =$$

$$\Rightarrow 3^7 \frac{\frac{1}{3}(1 - \frac{1}{3^{40}})}{1 - \frac{1}{3}} = \frac{1 \cdot (3^{40} - 1)}{2 \cdot 3^{33}}$$

$$P_n = 3^{6+4+2+0+\dots+n \text{ terms}}$$

$$= 3^{\frac{n}{2}(12 + (n-1)(-2))}$$

$$P_n = 3^{n(7-n)}$$

Q) Number of matrices A of order 3×2 such that all of its elements are from the set $\{-2, -1, 0, 1, 2\}$ such that trace of AA^T is 5, is equal to
 (A) 120 (B) 192 (C) 312 (D) 126

$$\Rightarrow a_1^2 + b_1^2 + a_2^2 + b_2^2 + a_3^2 + b_3^2 = 5$$

$$0,0,0,0,1,4 = {}^6C_4 \cdot 1^2 C_{1,2} \cdot 2$$

$$= 15 \cdot 8 = 120$$

$$0,1,1,1,1,1$$

$$= {}^6C_1 \cdot 1 \cdot (2)^5 = 6 \cdot 32$$

$$= 192$$

Ans. (C)

$$\frac{192}{120} = \frac{192}{312}$$

$$A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{bmatrix}$$

$$AA^T = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$

$$= \begin{bmatrix} a_1^2 + b_1^2 & & \\ & a_2^2 + b_2^2 & \\ & & a_3^2 + b_3^2 \end{bmatrix}$$

$$h = -\frac{\sqrt{2}\alpha}{3}, k = \frac{\sqrt{2}\beta}{3}$$

$$\alpha^2 + \beta^2 = 32 \quad \text{--- (1)} \Rightarrow \frac{9x^2}{2} + \frac{9y^2}{2} = 32$$

Q) Let a circle passes through origin and the points $A(-\sqrt{2}\alpha, 0)$, $B(0, \frac{\sqrt{3}\beta}{2})$, where α and β are non zero real parameters, such that its radius is 4. Then the radius of locus of centroid of triangle OAB is

(A) $\frac{2}{3}$

(B) $\frac{4}{3}$

(C) $\frac{11}{3}$

$(0, \sqrt{2}\beta)$

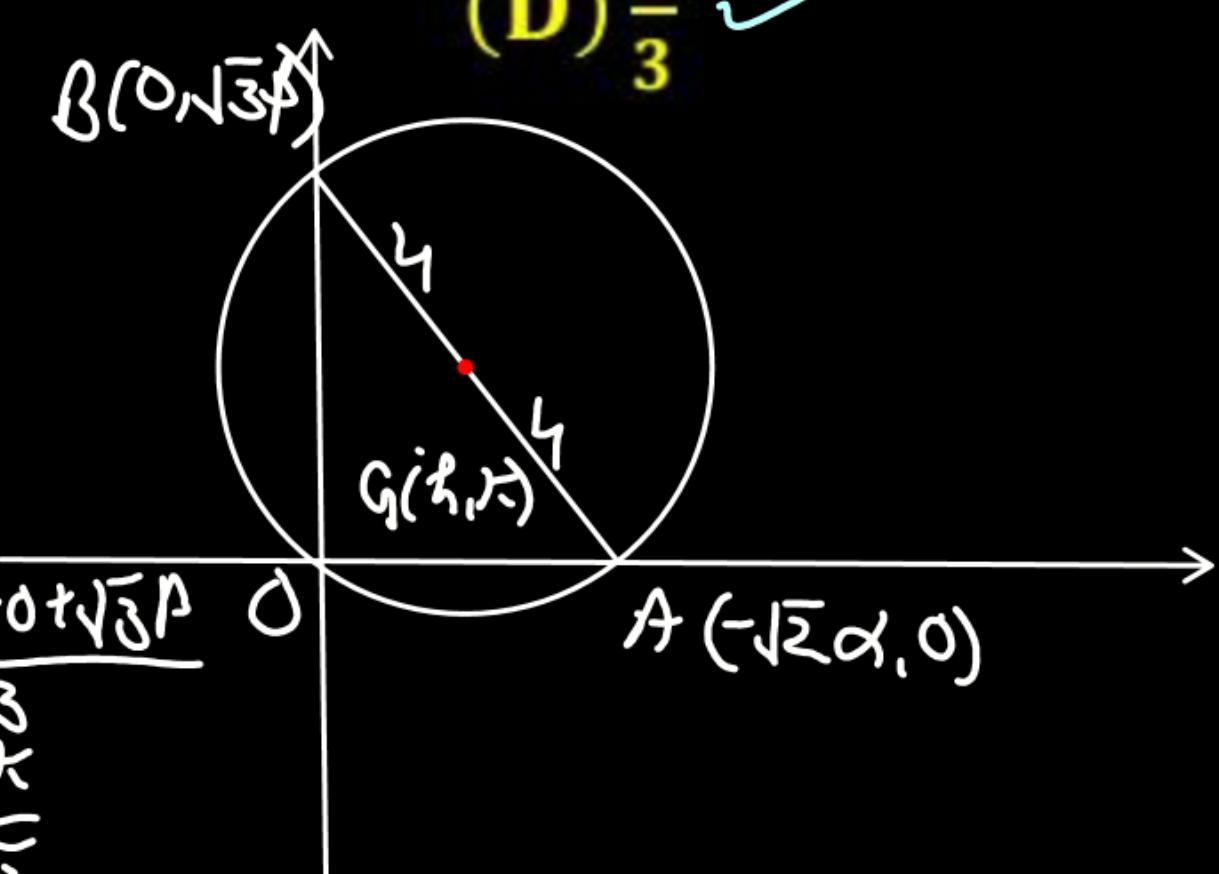
(D) $\frac{8}{3}$ ✓

$$2 \cdot \frac{9h^2}{2} + 3 \cdot \frac{3k^2}{3} = 64$$

$$9h^2 + 3k^2 = 64$$

$$AB^2 = 64$$

$$2\alpha^2 + 3\beta^2 = 64 \quad \text{--- (1)}$$


$$h = \frac{0+0-\sqrt{2}\alpha}{3}$$

$$\alpha = \frac{3h}{\sqrt{2}}$$

$$k = \frac{0+0+\sqrt{3}\beta}{3}$$

$$\beta = \frac{3k}{\sqrt{3}}$$

Ans. (D)

Predict your JEE Main-1 2026 percentile

TRY

eSaral's FREE Percentile Predictor

JEE Mains 2026 Marks vs Percentile

JEE Main Expected Marks:

Exam Date & Shift:

SELECT

Name:

Class:

SELECT

Phone Number: +91

Calculate Percentile

CHECK NOW

JEE 2026 BOUNCE BACK

Crash Course (JEE Main)

2025

1st Attempt
26%ile

JEE Advanced
IIT Bombay

AMAN

2025

1st Attempt
64%ile

JEE Advanced
IIT Kharagpur

ARYA

2025

1st Attempt
16%ile

2nd Attempt
99.31%ile

SHAHITH

2025

1st Attempt
58%ile

2nd Attempt
99%ile

AKSHAT

2025

1st Attempt
34%ile

2nd Attempt
99.79%ile

EISHAM

Enroll Now :- Get 60% OFF for 1st 1000 Students

- Most Successful Crash Course
- Daily Live Classes
- Most Expected Questions Classes
- 5 Layered Personal Mentorship
- Maximum 1 to 1 Care
- 5 Layered Doubt Solving System
- Score & All India Test Series

Know More

JEE 2026 BOUNCE BACK

Crash Course (JEE Main & Advanced)

2025

1st Attempt
26%ile

JEE Advanced
IIT Bombay

AMAN

2025

1st Attempt
64%ile

JEE Advanced
IIT Kharagpur

ARYA

2025

1st Attempt
16%ile

2nd Attempt
99.31%ile

SHAHITH

2025

1st Attempt
58%ile

2nd Attempt
99%ile

AKSHAT

2025

1st Attempt
34%ile

2nd Attempt
99.79%ile

EISHAM

Enroll Now :- Get 60% OFF for 1st 1000 Students

- Most Successful Crash Course
- Daily Live Classes
- Most Expected Questions Classes

- 5 Layered Personal Mentorship
- Maximum 1 to 1 Care
- 5 Layered Doubt Solving System
- Score & All India Test Series

Know More