A hyperbola passes through the foci of the ellipse
Question:

A hyperbola passes through the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ and its transverse and conjugate

axes coincide with major and minor axes of the ellipse, respectively. If the product of their

eccentricities is one, then the equation of the hyperbola is:

  1. (1) $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$

  2. (2) $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$

  3. (3) $x^{2}-y^{2}=9$

  4. (4) $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$


Correct Option: , 2

Solution:

$e_{1}=\sqrt{1-\frac{16}{25}}=\frac{3}{5} \quad$ foci $(\pm \mathrm{ae}, 0)$

Foci $=(\pm 3,0)$

Let equation of hyperbolabe $\frac{x^{2}}{A^{2}}-\frac{y^{2}}{B^{2}}=1$ Passes through $(\pm 3,0) A^{2}=9, A=3, e_{2}=\frac{5}{3}$

$e_{2}^{2}=1+\frac{B^{2}}{A^{2}}$

$\frac{25}{9}=1+\frac{B^{2}}{9} \Rightarrow B^{2}=16$

Ans $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$

Administrator

Leave a comment

Please enter comment.
Please enter your name.