An electromagnetic wave of intensity

Question:

An electromagnetic wave of intensity $50 \mathrm{Wm}^{-2}$ enters in a medium of refractive index ' $\mathrm{n}$ ' without any loss. The ratio of the magnitudes of electric fields, and the ratio of the magnitudes of magnetic fields of the wave before and after entering into the medium are respectively, given by:

  1. (1) $\left(\frac{1}{\sqrt{\mathrm{n}}}, \frac{1}{\sqrt{\mathrm{n}}}\right)$

  2. (2) $(\sqrt{\mathrm{n}}, \sqrt{\mathrm{n}})$

  3. (3) $\left(\sqrt{n}, \frac{1}{\sqrt{n}}\right)$

  4. (4) $\left(\frac{1}{\sqrt{n}}, \sqrt{n}\right)$


Correct Option: , 3

Solution:

(3) The speed of electromagnetic wave in free space is given by

$\mathrm{C}=\frac{1}{\sqrt{\mu_{0} \in_{0}}}$       ....(1)

In medium, $\mathrm{v}=\frac{1}{\sqrt{\mathrm{k} \in_{0} \mu_{0}}} \ldots$ (ii)

Dividing equation (i) by (ii), we get

$\therefore \frac{\mathrm{C}}{\mathrm{V}}=\sqrt{\mathrm{k}}=\mathrm{n}$

$\frac{1}{2} \in_{0} \mathrm{E}_{0}^{2} \mathrm{C}=$ intensity $=\frac{1}{2} \in_{0} \mathrm{kE}^{2} \mathrm{v}$

$\therefore \mathrm{E}_{0}^{2} \mathrm{C}=\mathrm{kE}^{2} \mathrm{v}$

$\Rightarrow \frac{E_{0}^{2}}{E^{2}}=\frac{k V}{C}=\frac{n^{2}}{n} \Rightarrow \frac{E_{0}}{E}=\sqrt{n}$

similarly

$\frac{B_{0}^{2} C}{2 \mu_{0}}=\frac{B^{2} v}{2 \mu_{0}} \Rightarrow \frac{B_{0}}{B}=\frac{1}{\sqrt{n}}$

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now