Evaluate the integral:
Question:

Evaluate the integral:

$\int \sqrt{9-x^{2}} d x$

Solution:

Key points to solve the problem:

– Such problems require the use of the method of substitution along with a method of integration by parts. By the method of integration by parts if we have $\int \mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \mathrm{dx}=\mathrm{f}(\mathrm{x}) \int \mathrm{g}(\mathrm{x}) \mathrm{dx}-\int \mathrm{f}^{\prime}(\mathrm{x})\left(\int \mathrm{g}(\mathrm{x}) \mathrm{dx}\right) \mathrm{dx}$

– To solve the integrals of the form: $\int \sqrt{a x^{2}+b x+c} d x$ after applying substitution and integration by parts we have direct formulae as described below:

$\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C$

$\therefore I=\int \sqrt{9-x^{2}} d x=\int \sqrt{3^{2}-x^{2}} d x$

As I match with the form: $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C$

$\therefore I=\frac{x}{2} \sqrt{9-(x)^{2}}+\frac{9}{2} \sin ^{-1}\left(\frac{x}{3}\right)+C$

Administrator

Leave a comment

Please enter comment.
Please enter your name.