If sin
Question:

If sin θ1 + sin θ2 + sin θ3 = 3, then write the value of cos θ1 + cos θ2 + cos θ3.

Solution:

Sine function can take the maximum value of 1.

If, $\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}=3$, then we have:

$\sin \theta_{1}=1$

$\Rightarrow \theta_{1}=\frac{\pi}{2}$

Similarly, $\theta_{2}=\theta_{3}=\frac{\pi}{2}$

$\Rightarrow \cos \theta_{1}=\cos \theta_{2}=\cos \theta_{3}=0$

$\Rightarrow \cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}=0$

Administrator

Leave a comment

Please enter comment.
Please enter your name.