In the given figure, if x = y and AB = CB, then prove that AE = CD.

In the given figure, if x = y and AB = CB, then prove that AE = CD.



Consider the triangles AEB and CDB.

$\angle E B A=\angle D B C$ (Common angle) …(i)

Further, we have:

$\angle \mathrm{BEA}=180-\mathrm{y}$

$\angle \mathrm{BDC}=180-\mathrm{x}$

Since $\mathrm{x}=\mathrm{y}$, we have $:$



$\Rightarrow \angle \mathrm{BEA}=\angle \mathrm{BDC} \quad \ldots$ (ii)

$\mathrm{AB}=\mathrm{CB} \quad$ (Given) …(iii)

From (i), (ii) and (iii), we have:

$\triangle B D C \cong \triangle B E A$ (AAS criterion)

$\therefore \mathrm{AE}=\mathrm{CD}(\mathrm{CPCT})$


Hence, proved.



Leave a comment

Please enter comment.
Please enter your name.