Show that
Question:

$\int_{4}^{5} e^{x} d x$

Solution:

Let $I=\int_{4}^{5} e^{x} d x$

$\int e^{x} d x=e^{x}=\mathrm{F}(x)$

By second fundamental theorem of calculus, we obtain

$\begin{aligned} I &=\mathrm{F}(5)-\mathrm{F}(4) \\ &=e^{5}-e^{4} \\ &=e^{4}(e-1) \end{aligned}$

 

 

Administrator

Leave a comment

Please enter comment.
Please enter your name.