Show that f(x)=tanx is an increasing function

Question:

Show that $f(x)=\tan x$ is an increasing function on $(-\pi / 2, \pi / 2)$.

Solution:

Given:- Function $f(x)=\tan x$

Theorem:- Let $f$ be a differentiable real function defined on an open interval $(a, b)$.

(i) If $f^{\prime}(x)>0$ for $a l l_{x} \in(a, b)$, then $f(x)$ is increasing on $(a, b)$

(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$

Algorithm:-

(i) Obtain the function and put it equal to $f(x)$

(ii) Find $f^{\prime}(x)$

(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.

Here we have,

$f(x)=\tan x$

$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}(\tan \mathrm{x})$

$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\sec ^{2} \mathrm{x}$

Now, as given

$\mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

That is $4^{\text {th }}$ quadrant, where

$\Rightarrow \sec ^{2} x>0$

$\Rightarrow f^{\prime}(x)>0$

hence, Condition for $f(x)$ to be increasing

Thus $f(x)$ is increasing on interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now