Question:
If $y=\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x}+\ldots \infty}}$, prove that $\frac{d y}{d x}=\frac{\sin x}{(1-2 y)}$
Solution:
If $y=\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x}+\ldots \infty}}$, prove that $\frac{d y}{d x}=\frac{\sin x}{(1-2 y)}$