Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with t1/2 = 3.00 hours. What fraction of sample of sucrose remains after 8 hours?
For a first order reaction,
$k=\frac{2.303}{t} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]}$
It is given that, t1/2 = 3.00 hours
Therefore, $k=\frac{0.693}{t_{1 / 2}}$
$=\frac{0.693}{3} \mathrm{~h}^{-1}$
= 0.231 h−1
Then, $0.231 \mathrm{~h}^{-1}=\frac{2.303}{8 \mathrm{~h}} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]}$
$\Rightarrow \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]}=\frac{0.231 \mathrm{~h}^{-1} \times 8 \mathrm{~h}}{2.303}$
$\Rightarrow \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]}=\operatorname{antilog}(0.8024)$
$\Rightarrow \frac{[R]_{0}}{[R]}=6.3445$
$\Rightarrow \frac{[\mathrm{R}]}{[\mathrm{R}]_{0}}=0.1576$ (approx)
$=0.158$
Hence, the fraction of sample of sucrose that remains after 8 hours is 0.158.