The Cartesian product A × A has 9 elements among which are found

The Cartesian product $A \times A$ has 9 elements among which are found $(-1,0)$ and $(0,1)$. Find the set $A$ and the remaining elements of $A \times A$.


We know that if $n(A)=p$ and $n(B)=q$, then $n(A \times B)=p q$.

$\therefore n(A \times A)=n(A) \times n(A)$

It is given that $n(A \times A)=9$

$\therefore n(A) \times n(A)=9$

$\Rightarrow n(\mathrm{~A})=3$

The ordered pairs $(-1,0)$ and $(0,1)$ are two of the nine elements of $A \times A$.

We know that $A \times A=\{(a, a): a \in A\}$. Therefore, $-1,0$, and 1 are elements of $A$.

Since $n(A)=3$, it is clear that $A=\{-1,0,1\}$.

The remaining elements of set $A \times A$ are $(-1,-1),(-1,1),(0,-1),(0,0)$,

$(1,-1),(1,0)$, and $(1,1)$


Leave a comment

Please enter comment.
Please enter your name.