The total number of positive
Question:

The total number of positive integral solutions $(x, y, z)$ such that $x y z=24$ is

  1. (1) 36

  2. (2) 45

  3. (3) 24

  4. (4) 30


Correct Option: , 4

Solution:

$x \cdot y \cdot z=24$

$x \cdot y \cdot z=2^{3} \cdot 3^{1}$

Now using beggars method. 3 things to be distributed among 3 persons\

Each may receive none, one or more $\therefore{ }^{5} \mathrm{C}_{2}$ ways

Similarly for $1^{\prime} \therefore{ }^{3} \mathrm{C}_{2}$ ways

Total ways $={ }^{5} \mathrm{C}_{2} \cdot{ }^{3} \mathrm{C}_{2}=30$ ways

Administrator

Leave a comment

Please enter comment.
Please enter your name.