Q.2 The time period of revolution of electron in its ground state orbit in a hydrogen atom is 1.6×10^{-16} s. The frequency of revolution of the electron in its first excited state (in s$^{-1}$) is:

Options
1. 6.2×10^{15}
2. 5.6×10^{12}
3. 7.8×10^{14}
4. 1.6×10^{14}

Q.3 A long solenoid of radius R carries a time (t)-dependent current $I(t) = I_0(1-t)$. A ring of radius 2R is placed coaxially near its middle. During the time interval $0 \leq t \leq 1$, the induced current (I_R) and the induced EMF(V_R) in the ring change as:

Options
1. At $t = 0.5$ direction of I_R reverses and V_R is zero
2. Direction of I_R remains unchanged and V_R is zero at $t = 0.25$
3. Direction of I_R remains unchanged and V_R is maximum at $t = 0.5$
4. At $t = 0.25$ direction of I_R reverses and V_R is maximum
Q.4 A 60 HP electric motor lifts an elevator having a maximum total load capacity of 2000 kg. If the frictional force on the elevator is 4000 N, the speed of the elevator at full load is close to: (1 HP = 746 W, \(g = 10 \text{ ms}^{-2} \))

Options 1. 1.7 ms\(^{-1}\)
2. 2.0 ms\(^{-1}\)
3. 1.9 ms\(^{-1}\)
4. 1.5 ms\(^{-1}\)

Q.5 The current \(I_1 \) (in A) flowing through 1 \(\Omega \) resistor in the following circuit is:

\[\begin{array}{c}
\text{I}_1 \quad 1 \Omega \\
\text{1} \quad 2 \Omega \\
\text{2} \quad 1 \Omega \\
\text{1 V} \\
\end{array} \]

Options 1. 0.5
2. 0.2
3. 0.25
4. 0.4
Q.6
A litre of dry air at STP expands adiabatically to a volume of 3 litres. If \(\gamma = 1.40 \), the work done by air is:
\[
(3^{1.4} = 4.6555) \quad [\text{Take air to be an ideal gas}]
\]

Options 1. 90.5 J
2. 48 J
3. 60.7 J
4. 100.8 J

Q.7
As shown in the figure, a bob of mass \(m \) is tied by a massless string whose other end portion is wound on a fly wheel (disc) of radius \(r \) and mass \(m \). When released from rest the bob starts falling vertically. When it has covered a distance of \(h \), the angular speed of the wheel will be:

Options 1. \(\frac{1}{r} \sqrt{\frac{2gh}{3}} \)
2. \(r \sqrt{\frac{3}{4gh}} \)
3. \(\frac{1}{r} \sqrt{\frac{4gh}{3}} \)
4. \(r \sqrt{\frac{3}{2gh}} \)
Q.8 Which of the following gives a reversible operation?

Options
1.
2.
3.
4.

Question Type: MCQ
Question ID: 40503619
Option 1 ID: 40503675
Option 2 ID: 40503673
Option 3 ID: 40503676
Option 4 ID: 40503674
Status: Answered
Chosen Option: 2

Q.9 If we need a magnification of 375 from a compound microscope of tube length 150 mm and an objective of focal length 5 mm, the focal length of the eye-piece, should be close to:

Options
1. 22 mm
2. 12 mm
3. 33 mm
4. 2 mm

Question Type: MCQ
Question ID: 40503616
Option 1 ID: 40503662
Option 2 ID: 40503661
Option 3 ID: 40503663
Option 4 ID: 40503664
Status: Answered
Chosen Option: 1
Q. 10 The radius of gyration of a uniform rod of length \(l \), about an axis passing through a point \(\frac{l}{4} \) away from the centre of the rod, and perpendicular to it, is:

Options
1. \(\frac{1}{8} l \)
2. \(\frac{7}{48} l \)
3. \(\frac{3}{8} l \)
4. \(\frac{1}{4} l \)

Q. 11 If the magnetic field in a plane electromagnetic wave is given by
\[\vec{B} = 3 \times 10^{-8} \sin(1.6 \times 10^3 x + 48 \times 10^{10}) \hat{j} \text{ T}, \]
then what will be expression for electric field?

Options
1. \(\vec{E} = \left(9 \sin(1.6 \times 10^3 x + 48 \times 10^{10}) \hat{k} \right) \text{ V/m} \)
2. \(\vec{E} = \left(3 \times 10^{-8} \sin(1.6 \times 10^3 x + 48 \times 10^{10}) \hat{i} \right) \text{ V/m} \)
3. \(\vec{E} = \left(6 \sin(1.6 \times 10^3 x + 48 \times 10^{10}) \hat{k} \right) \text{ V/m} \)
4. \(\vec{E} = \left(3 \times 10^{-8} \sin(1.6 \times 10^3 x + 48 \times 10^{10}) \hat{j} \right) \text{ V/m} \)
Q.12 Consider a circular coil of wire carrying constant current I, forming a magnetic dipole. The magnetic flux through an infinite plane that contains the circular coil and excluding the circular coil area is given by \(\phi_i \). The magnetic flux through the area of the circular coil area is given by \(\phi_0 \). Which of the following option is correct?

Options
1. \(\phi_i = -\phi_0 \)
2. \(\phi_i = \phi_0 \)
3. \(\phi_i < \phi_0 \)
4. \(\phi_i > \phi_0 \)

Q.13 Speed of a transverse wave on a straight wire (mass 6.0 g, length 60 cm and area of cross-section 1.0 mm\(^2\)) is 90 m\(^s\)\(^{-1}\). If the Young’s modulus of wire is \(16 \times 10^{11} \) Nm\(^{-2}\), the extension of wire over its natural length is:

Options
1. 0.02 mm
2. 0.04 mm
3. 0.03 mm
4. 0.01 mm
Q.14 Visible light of wavelength 6000×10^{-8} cm falls normally on a single slit and produces a diffraction pattern. It is found that the second diffraction minimum is at 60° from the central maximum. If the first minimum is produced at θ_1, then θ_1 is close to:

Options
1. 20°
2. 45°
3. 30°
4. 25°

Question Type: MCQ
Question ID: 40503620
Option 1 ID: 40503680
Option 2 ID: 40503677
Option 3 ID: 40503678
Option 4 ID: 40503679
Status: Answered
Chosen Option: 2

Q.15 A polarizer-analyser set is adjusted such that the intensity of light coming out of the analyser is just 10% of the original intensity. Assuming that the polarizer-analyser set does not absorb any light, the angle by which the analyser need to be rotated further to reduce the output intensity to be zero, is:

Options
1. 18.4°
2. 71.6°
3. 90°
4. 45°

Question Type: MCQ
Question ID: 40503617
Option 1 ID: 40503666
Option 2 ID: 40503667
Option 3 ID: 40503665
Option 4 ID: 40503668
Status: Answered
Chosen Option: 1
A satellite of mass m is launched vertically upwards with an initial speed u from the surface of the earth. After it reaches height R (R = radius of the earth), it ejects a rocket of mass $\frac{m}{10}$ so that subsequently the satellite moves in a circular orbit. The kinetic energy of the rocket is (G is the gravitational constant; M is the mass of the earth):

Options

1. $\frac{m}{20} \left(u - \sqrt{\frac{2GM}{3R}} \right)^2$

2. $5m \left(u^2 - \frac{119}{200} \frac{GM}{R} \right)$

3. $\frac{3m}{8} \left(u + \sqrt{\frac{5GM}{6R}} \right)^2$

4. $\frac{m}{20} \left(u^2 + \frac{113}{200} \frac{GM}{R} \right)$
Q.17 Three point particles of masses 1.0 kg, 1.5 kg, and 2.5 kg are placed at three corners of a right angle triangle of sides 4.0 cm, 3.0 cm and 5.0 cm as shown in the figure. The center of mass of the system is at a point:

Options:
1. 1.5 cm right and 1.2 cm above 1 kg mass
2. 0.9 cm right and 2.0 cm above 1 kg mass
3. 0.6 cm right and 2.0 cm above 1 kg mass
4. 2.0 cm right and 0.9 cm above 1 kg mass
Q.18
Two moles of an ideal gas with \(\frac{C_p}{C_V} = \frac{5}{3} \)
are mixed with 3 moles of another ideal gas
with \(\frac{C_p}{C_V} = \frac{4}{3} \). The value of \(\frac{C_p}{C_V} \) for the
mixture is:

Options
1. 1.50
2. 1.42
3. 1.45
4. 1.47

Q.19
A LCR circuit behaves like a damped harmonic oscillator. Comparing it with a
physical spring-mass damped oscillator having damping constant 'b', the correct
equivalence would be:

Options
1. \(L \leftrightarrow m, C \leftrightarrow \frac{1}{k}, R \leftrightarrow b \)
2. \(L \leftrightarrow \frac{1}{b}, C \leftrightarrow \frac{1}{m}, R \leftrightarrow \frac{1}{k} \)
3. \(L \leftrightarrow m, C \leftrightarrow k, R \leftrightarrow b \)
4. \(L \leftrightarrow k, C \leftrightarrow b, R \leftrightarrow m \)
Two infinite planes each with uniform surface charge density $+\sigma$ are kept in such a way that the angle between them is 30°. The electric field in the region shown between them is given by:

\[\frac{+\sigma}{+\sigma} \quad 30^\circ \]

\[+ \sigma \quad y \]

\[+ \sigma \quad x \]

Options:

1. \(\frac{\sigma}{\varepsilon_0} \left[\left(1 + \frac{\sqrt{3}}{2} \right) \hat{y} + \frac{\hat{x}}{2} \right] \)

2. \(\frac{\sigma}{2\varepsilon_0} \left[\left(1 - \frac{\sqrt{3}}{2} \right) \hat{y} - \frac{\hat{x}}{2} \right] \)

3. \(\frac{\sigma}{2\varepsilon_0} \left[\left(1 + \sqrt{3} \right) \hat{y} + \frac{\hat{x}}{2} \right] \)

4. \(\frac{\sigma}{2\varepsilon_0} \left[\left(1 + \sqrt{3} \right) \hat{y} - \frac{\hat{x}}{2} \right] \)
Q.21 A particle (m = 1 kg) slides down a frictionless track (AOC) starting from rest at a point A (height 2 m). After reaching C, the particle continues to move freely in air as a projectile. When it reaching its highest point P (height 1 m), the kinetic energy of the particle (in J) is : (Figure drawn is schematic and not to scale; take \(g = 10 \text{ ms}^{-2} \)).

\[
\begin{align*}
\text{Given} & \quad 10.00 \\
\text{Answer} : & \quad \\
\text{Question Type} : & \quad \text{SA} \\
\text{Question ID} : & \quad 40503621 \\
\text{Status} : & \quad \text{Answered}
\end{align*}
\]

Q.22 A Carnot engine operates between two reservoirs of temperatures 900 K and 300 K. The engine performs 1200 J of work per cycle. The heat energy (in J) delivered by the engine to the low temperature reservoir, in a cycle, is .

\[
\begin{align*}
\text{Given} & \quad 1800.00 \\
\text{Answer} : & \quad \\
\text{Question Type} : & \quad \text{SA} \\
\text{Question ID} : & \quad 40503623 \\
\text{Status} : & \quad \text{Answered}
\end{align*}
\]

Q.23 A beam of electromagnetic radiation of intensity \(6.4 \times 10^{-5} \text{ W/cm}^2 \) is comprised of wavelength, \(\lambda = 310 \text{ nm} \). It falls normally on a metal (work function \(\varphi = 2\text{eV} \)) of surface area of 1 \text{ cm}^2. If one in \(10^3 \) photons ejects an electron, total number of electrons ejected in 1 s is \(10^5 \). (\(h \alpha = 1240 \text{ eVnm}, 1\text{eV} = 1.6 \times 10^{-19} \text{ J} \)), then \(x \) is .

\[
\begin{align*}
\text{Given} & \quad 11.00 \\
\text{Answer} : & \quad \\
\text{Question Type} : & \quad \text{SA} \\
\text{Question ID} : & \quad 40503625 \\
\text{Status} : & \quad \text{Answered}
\end{align*}
\]
Q.24
A non-isotropic solid metal cube has coefficients of linear expansion as:
\[5 \times 10^{-5}/^\circ C \] along the x-axis and
\[5 \times 10^{-6}/^\circ C \] along the y and the z-axis. If the coefficient of volume expansion of the solid is \(C \times 10^{-6}/^\circ C \) then the value of \(C \) is

Given 60.00
Answer:

Q.25
A loop ABCDEFA of straight edges has six corner points A(0, 0, 0), B(5, 0, 0), C(5, 5, 0),
D(0, 5, 0), E(0, 5, 5) and F(0, 0, 5). The magnetic field in this region is
\[\mathbf{B} = (3\mathbf{i} + 4\mathbf{k}) \, \text{T} \]. The quantity of flux through the loop ABCDEFA (in Wb) is

Given 175.00
Answer:
A solution of m-chloroaniline, m-chlorophenol and m-chlorobenzoic acid in ethyl acetate was extracted initially with a saturated solution of NaHCO₃ to give fraction A. The left over organic phase was extracted with dilute NaOH solution to give fraction B. The final organic layer was labelled as fraction C. Fractions A, B and C, contain respectively:

Options:
1. m-chlorobenzoic acid, m-chloroaniline and m-chlorophenol
2. m-chlorobenzoic acid and m-chlorophenol
3. m-chlorobenzoic acid, m-chlorophenol and m-chloroaniline
4. m-chlorophenol, m-chlorobenzoic acid and m-chloroaniline
Q.2 1-methyl ethylene oxide when treated with an excess of HBr produces:

Options
1.
\[
\begin{array}{c}
\text{Br} \\
\text{CH}_3
\end{array}
\]
2.
\[
\begin{array}{c}
\text{Br} \\
\text{Br}
\end{array}
\]
3.
\[
\begin{array}{c}
\text{Br} \\
\text{CH}_3
\end{array}
\]
4.
\[
\begin{array}{c}
\text{Br} \\
\text{CH}_3
\end{array}
\]

Question Type: MCQ
Question ID: 40503644
Option 1 ID: 405036159
Option 2 ID: 405036161
Option 3 ID: 405036158
Option 4 ID: 405036160
Status: Answered
Chosen Option: 4

Q.3 Amongst the following statements, that which was not proposed by Dalton was:

Options
1. all the atoms of a given element have identical properties including identical mass. Atoms of different elements differ in mass.
2. chemical reactions involve reorganization of atoms. These are neither created nor destroyed in a chemical reaction.
3. when gases combine or reproduced in a chemical reaction they do so in a simple ratio by volume provided all gases are at the same T & P.
4. matter consists of indivisible atoms.

Question Type: MCQ
Question ID: 40503631
Option 1 ID: 405036107
Option 2 ID: 405036109
Option 3 ID: 405036108
Option 4 ID: 405036106
Status: Answered
Chosen Option: 3
Q.4 What is the product of following reaction?

Hex-3-yonal \[
\begin{align*}
(i) & \quad \text{NaBH}_4 \\
(ii) & \quad \text{PBr}_3 \\
(iii) & \quad \text{Mg/ether} \\
(iv) & \quad \text{CO}_2/\text{H}_2\text{O}^+ \\
\end{align*}
\]

Options

1. \(\text{COOH}\)
2. \(\text{COOH}\)
3. \(\text{COOH}\)
4. \(\text{COOH}\)

Q.5 The increasing order of pK\(_b\) for the following compounds will be:

\(\text{NH}_2-\text{CH}=\text{NH,}\)
(A)

(B)

\(\text{CH}_3\text{NHCH}_3\)
(C)

Options

1. \((A) < (B) < (C)\)
2. \((C) < (A) < (B)\)
3. \((B) < (A) < (C)\)
4. \((B) < (C) < (A)\)
Q.6 The atomic radius of Ag is closest to:

Options:
1. Cu
2. Hg
3. Au
4. Ni

Q.7 The dipole moments of CCl₄, CHCl₃, and CH₄ are in the order:

Options:
1. CH₄ = CCl₄ < CHCl₃
2. CH₄ < CCl₄ < CHCl₃
3. CCl₄ < CH₄ < CHCl₃
4. CHCl₃ < CH₄ = CCl₄

Q.8 Given that the standard potentials (E°) of Cu²⁺/Cu and Cu⁺/Cu are 0.34 V and 0.522 V respectively, the E° of Cu²⁺/Cu⁺ is:

Options:
1. +0.158 V
2. 0.182 V
3. −0.182 V
4. −0.158 V
Q.9 In comparison to the zeolite process for the removal of permanent hardness, the synthetic resins method is:

Options
1. less efficient as it exchanges only anions
2. more efficient as it can exchange only cations
3. less efficient as the resins cannot be regenerated
4. more efficient as it can exchange both cations as well as anions

Q.10 The relative strength of interionic/intermolecular forces in decreasing order is:

Options
1. ion-dipole > ion-ion > dipole-dipole
2. dipole-dipole > ion-dipole > ion-ion
3. ion-dipole > dipole-dipole > ion-ion
4. ion-ion > ion-dipole > dipole-dipole
Q.11
Consider the following reactions:

(a) $\text{(CH}_3\text{)}_2\text{CCH(OH)CH}_3 \xrightarrow{\text{conc. H}_2\text{SO}_4} \text{CH}_2\text{CH}_2\text{CHO}$

(b) $\text{(CH}_3\text{)}_2\text{CHCH(Br)CH}_3 \xrightarrow{\text{alc. KOH}} \text{CH}_3\text{CHO}$

(c) $\text{(CH}_3\text{)}_2\text{CHCH(Br)CH}_3 \xrightarrow{(\text{CH}_3\text{)}_2\text{O}_2\text{K}}$

(d) $\text{(CH}_3\text{)}_2\text{C} - \text{CH}_2 - \text{CHO} \xrightarrow{\Delta} \text{CH}_3\text{CHO}$

Which of these reaction(s) will not produce Saytzeff product?

Options 1. (c) only
2. (a), (c) and (d)
3. (d) only
4. (b) and (d)

Q.12
The purest form of commercial iron is:

Options 1. scrap iron and pig iron
2. wrought iron
3. cast iron
4. pig iron
Q.13 At 35°C, the vapour pressure of CS₂ is 512 mm Hg and that of acetone is 344 mm Hg. A solution of CS₂ in acetone has a total vapour pressure of 600 mm Hg. The false statement amongst the following is:

Options

1. heat must be absorbed in order to produce the solution at 35°C
2. Raoult's law is not obeyed by this system
3. a mixture of 100 mL CS₂ and 100 mL acetone has a volume < 200 mL
4. CS₂ and acetone are less attracted to each other than to themselves

Q.14 The electron gain enthalpy (in kJ/mol) of fluorine, chlorine, bromine and iodine, respectively, are:

Options

1. −333, −349, −325 and −296
2. −296, −325, −333 and −349
3. −333, −325, −349 and −296
4. −349, −333, −325 and −296
Q.15 The number of orbitals associated with quantum numbers \(n=5, \ m_s = + \frac{1}{2} \) is:

Options 1. 11
2. 25
3. 15
4. 50

Q.16 Match the following:
(i) Riboflavin (a) Beriberi
(ii) Thiamine (b) Scurvy
(iii) Pyridoxine (c) Cheilosis
(iv) Ascorbic acid (d) Convulsions

Options 1. (i)-(c), (ii)-(a), (iii)-(d), (iv)-(b)
2. (i)-(c), (ii)-(d), (iii)-(a), (iv)-(b)
3. (i)-(d), (ii)-(b), (iii)-(a), (iv)-(c)
4. (i)-(a), (ii)-(d), (iii)-(c), (iv)-(b)
Q.17 The theory that can completely/properly explain the nature of bonding in [Ni(Co)₄] is:

Options 1. Werner’s theory
2. Crystal field theory
3. Valence bond theory
4. Molecular orbital theory

Q.18 Consider the following reaction:

\[
\text{CH}_3\text{NH}_2 + \text{NaSO}_3 \xrightarrow{\text{OH}^-} \text{CH}_3\text{N}^+\text{SO}_3^- + \text{Cl}^-
\]

The product ‘X’ is used:

Options 1. in acid base titration as an indicator
2. in protein estimation as an alternative to ninhydrin
3. in laboratory test for phenols
4. as food grade colourant
Q.19 The IUPAC name of the complex [Pt(NH₃)₂Cl(NH₂CH₃)]Cl is:

Options

1. Diammine(methanamine)chlorido platinum(II)chloride
2. Bisammine(methanamine)chlorido platinum(II)chloride
3. Diamminechlorido(aminomethane) platinum(II)chloride
4. Diamminechlorido(methanamine) platinum(II)chloride

Q.20 Oxidation number of potassium in K₂O, K₂O₂ and KO₂, respectively, is:

Options

1. +1, +4 and +2
2. +1, +2 and +4
3. +1, +1 and +1
4. +2, +1 and +\(\frac{1}{2}\)

Q.21 For the reaction:

\[\text{A}(l) \rightarrow 2\text{B}(g) \]

\[\Delta U = 2.1 \text{ kcal}, \quad \Delta S = 20 \text{ cal K}^{-1} \text{ at 300 K.} \]

Hence \(\Delta G \) in kcal is _________.

Given: -2.70

Answer:
Q.22 During the nuclear explosion, one of the products is ^{90}Sr with half life of 6.93 years. If 1 µg of ^{90}Sr was absorbed in the bones of a newly born baby in place of Ca, how much time, in years, is required to reduce it by 90% if it is not lost metabolically _______.

Given 23.03
Answer :

Q.23 The number of chiral carbons in chloramphenicol is _________.

Given 4.00
Answer :

Q.24 Two solutions, A and B, each of 100 L was made by dissolving 4 g of NaOH and 9.8 g of H$_2$SO$_4$ in water, respectively. The pH of the resultant solution obtained from mixing 40 L of solution A and 10 L of solution B is _________.

Given 10.60
Answer :

Q.25 Chlorine reacts with hot and concentrated NaOH and produces compounds (X) and (Y). Compound (X) gives white precipitate with silver nitrate solution. The average bond order between Cl and O atoms in (Y) is _________.

Given 1.66
Answer :
Q.1 If \(g(x) = x^2 + x - 1 \) and
\[
(g \circ f)(x) = 4x^2 - 10x + 5, \text{ then } f \left(\frac{5}{4} \right) \text{ is equal to :}
\]
Options
1. \(\frac{3}{2} \)
2. \(-\frac{1}{2} \)
3. \(-\frac{3}{2} \)
4. \(\frac{1}{2} \)

Q.2 If \(\text{Re} \left(\frac{z-1}{2z+i} \right) = 1 \), where \(z = x + iy \), then the point \((x, y) \) lies on a :
Options
1. circle whose centre is at \(\left(-\frac{1}{2}, -\frac{3}{2} \right) \).
2. circle whose diameter is \(\frac{\sqrt{5}}{2} \).
3. straight line whose slope is \(\frac{3}{2} \).
4. straight line whose slope is \(-\frac{2}{3} \).
Q.3 Five numbers are in A.P., whose sum is 25 and product is 2520. If one of these five numbers is \(-\frac{1}{2}\), then the greatest number amongst them is:

Options 1. \(\frac{21}{2}\)
2. 27
3. 16
4. 7

Q.4 If

\[y(\alpha) = 2 \left(\frac{\tan \alpha + \cot \alpha}{1 + \tan^2 \alpha} \right) + \frac{1}{\sin^2 \alpha}, \quad \alpha \in \left(\frac{3\pi}{4}, \pi\right), \]

then \(\frac{dy}{d\alpha}\) at \(\alpha = \frac{5\pi}{6}\) is:

Options 1. 4
2. \(-\frac{1}{4}\)
3. \(\frac{4}{3}\)
4. \(-4\)
Q.5 Let \(\alpha \) be a root of the equation \(x^2 + x + 1 = 0 \).

\[
\text{and the matrix } A = \frac{1}{\sqrt{3}} \begin{bmatrix}
1 & 1 & 1 \\
1 & \alpha & \alpha^2 \\
1 & \alpha^2 & \alpha^4
\end{bmatrix},
\]

then the matrix \(A^{31} \) is equal to:

Options 1. \(A^3 \)
 2. \(A \)
 3. \(A^2 \)
 4. \(I_3 \)

Q.6 If \(y = mx + 4 \) is a tangent to both the parabolas, \(y^2 = 4x \) and \(x^2 = 2by \), then \(b \) is equal to:

Options 1. 128
 2. \(-64 \)
 3. \(-128 \)
 4. \(-32 \)
Q.7 If the distance between the foci of an ellipse is 6 and the distance between its directrices is 12, then the length of its latus rectum is:

Options
1. \(\sqrt{3} \)
2. \(2\sqrt{3} \)
3. \(3\sqrt{2} \)
4. \(\frac{3}{\sqrt{2}} \)

Q.8 An unbiased coin is tossed 5 times. Suppose that a variable X is assigned the value k when k consecutive heads are obtained for k = 3, 4, 5, otherwise X takes the value -1. Then the expected value of X is:

Options
1. \(\frac{3}{16} \)
2. \(-\frac{3}{16} \)
3. \(\frac{1}{8} \)
4. \(-\frac{1}{8} \)
Q.9 The area of the region, enclosed by the circle \(x^2 + y^2 = 2 \) which is not common to the region bounded by the parabola \(y^2 = x \) and the straight line \(y = x \), is:

Options
1. \(\frac{1}{3} (12\pi - 1) \)
2. \(\frac{1}{6} (12\pi - 1) \)
3. \(\frac{1}{6} (24\pi - 1) \)
4. \(\frac{1}{3} (6\pi - 1) \)

Q.10 Let \(x^k + y^k = a^k, \) \(a, k > 0 \) and

\[
\frac{dy}{dx} + \left(\frac{y}{x} \right)^{\frac{1}{3}} = 0
\]

then \(k \) is:

Options
1. \(\frac{3}{2} \)
2. \(\frac{1}{3} \)
3. \(\frac{2}{3} \)
4. \(\frac{4}{3} \)
Q.11 If \(y = y(x) \) is the solution of the differential equation, \(e^y \left(\frac{dy}{dx} - 1 \right) = e^x \) such that \(y(0) = 0 \), then \(y(1) \) is equal to:

Options
1. \(2 + \log_e 2 \)
2. \(2e \)
3. \(\log_e 2 \)
4. \(1 + \log_e 2 \)

Q.12 Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear, is:

Options
1. \(\frac{5}{2} (6!) \)
2. \(56 \)
3. \(\frac{1}{2} (6!) \)
4. \(6! \)
Q.13 Let P be a plane passing through the points
(2, 1, 0), (4, 1, 1) and (5, 0, 1) and R be any
point (2, 1, 6). Then the image of R in the
plane P is:

Options
1. (6, 5, −2)
2. (4, 3, 2)
3. (3, 4, −2)
4. (6, 5, 2)

Q.14 A vector \(\vec{a} = \alpha \hat{i} + 2\hat{j} + \beta \hat{k} \) (\(\alpha, \beta \in \mathbb{R} \)) lies
in the plane of the vectors, \(\vec{b} = \hat{i} + \hat{j} \) and
\(\vec{c} = \hat{i} - \hat{j} + 4\hat{k} \). If \(\vec{a} \) bisects the angle
between \(\vec{b} \) and \(\vec{c} \), then:

Options
1. \(\vec{a} \cdot \hat{i} + 1 = 0 \)
2. \(\vec{a} \cdot \hat{i} + 3 = 0 \)
3. \(\vec{a} \cdot \hat{k} + 4 = 0 \)
4. \(\vec{a} \cdot \hat{k} + 2 = 0 \)
Q.15 If \(f(a + b + 1 - x) = f(x) \), for all \(x \), where \(a \) and \(b \) are fixed positive real numbers,

then \(\frac{1}{a + b} \int_a^b x(f(x) + f(x + 1)) \, dx \) is
equal to:

Options
1. \(\int_{a + 1}^{b + 1} f(x) \, dx \)
2. \(\int_{a + 1}^{b + 1} f(x + 1) \, dx \)
3. \(\int_{a - 1}^{b - 1} f(x + 1) \, dx \)
4. \(\int_{a - 1}^{b - 1} f(x) \, dx \)

Question Type: MCQ
Question ID: 40503660
Option 1 ID: 405036209
Option 2 ID: 405036210
Option 3 ID: 405036208
Option 4 ID: 405036207
Status: Answered
Chosen Option: 3

Q.16 Let the function, \(f : [-7, 0] \to \mathbb{R} \) be continuous on \([-7, 0]\) and differentiable on \((-7, 0) \). If \(f(-7) = -3 \) and \(f'(x) \leq 2 \), for all \(x \in (-7, 0) \), then for all such functions \(f \), \(f(-1) + f(0) \) lies in the interval:

Options
1. \([-6, 20]\)
2. \((-\infty, 20]\)
3. \((-\infty, 11]\)
4. \([-3, 11]\)

Question Type: MCQ
Question ID: 40503659
Option 1 ID: 405036205
Option 2 ID: 405036206
Option 3 ID: 405036203
Option 4 ID: 405036204
Status: Answered
Chosen Option: 2
Q.17 If the system of linear equations
 \[\begin{align*}
 2x + 2ay + az &= 0 \\
 2x + 3by + bz &= 0 \\
 2x + 4cy + cz &= 0,
 \end{align*}\]
 where \(a, b, c \in \mathbb{R}\) are non-zero and distinct;
 has a non-zero solution, then:

 Options
 1. \(a, b, c\) are in A.P.
 2. \(a + b + c = 0\)
 3. \(a, b, c\) are in G.P.
 4. \(\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\) are in A.P.

Q.18 Let \(\alpha\) and \(\beta\) be two real roots of the equation
 \[(k + 1)\tan^2 x - \sqrt{2} \cdot \lambda \tan x = (1 - k),\]
 where \(k(\neq -1)\) and \(\lambda\) are real numbers. If \(\tan^2(\alpha + \beta) = 50\), then a value of \(\lambda\) is:

 Options
 1. 5
 2. 10
 3. \(5\sqrt{2}\)
 4. \(10\sqrt{2}\)
Q. 19
The logical statement
\((p \Rightarrow q) \land (q \Rightarrow \neg p)\) is equivalent to:

Options
1. p
2. q
3. \(\neg p\)
4. \(\neg q\)

Q. 20
The greatest positive integer k, for which
49\(^k\) + 1 is a factor of the sum
49^125 + 49^{124} + \ldots + 49^2 + 49 + 1, is:

Options
1. 32
2. 60
3. 63
4. 65

Q. 21
\[\lim_{x \to 2} \frac{3^x + 3^{3-x} - 12}{3^{\frac{x}{2}} - 3^{1-x}}\] is equal to

Given 36.00
Answer:

Given 36.00
Answer:
Q.22 If the variance of the first n natural numbers is 10 and the variance of the first m even natural numbers is 16, then m + n is equal to __________.

Given 26.00
Answer:

Q.23 If the sum of the coefficients of all even powers of x in the product

\[(1 + x + x^2 + \ldots + x^{2n}) (1 - x + x^2 - x^3 + \ldots + x^{2n})\]

is 61, then n is equal to __________.

Given 61.00
Answer:

Q.24 Let A(1, 0), B(6, 2) and C\((\frac{3}{2}, 6)\) be the vertices of a triangle ABC. If P is a point inside the triangle ABC such that the triangles APC, APB and BPC have equal areas, then the length of the line segment PQ, where Q is the point \((-\frac{7}{6}, -\frac{1}{3})\), is __________.

Given 5.00
Answer:

Q.25 Let S be the set of points where the function,

\[f(x) = |2 - |x - 3||, x \in \mathbb{R},\]

is not differentiable. Then \[\sum_{x \in S} f(x)\] is equal to __________.

Given 3.00
Answer: