Exercise 11.1

Question 1:

If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.

Answer

Let direction cosines of the line be l, m, and n.

$$l = \cos 90^\circ = 0$$

$$m = \cos 135^\circ = -\frac{1}{\sqrt{2}}$$
$$n = \cos 45^\circ = \frac{1}{\sqrt{2}}$$

Therefore, the direction cosines of the line are $0, -\frac{1}{\sqrt{2}}$, and $\frac{1}{\sqrt{2}}$.

Question 2:

Find the direction cosines of a line which makes equal angles with the coordinate axes. Answer

Let the direction cosines of the line make an angle *a* with each of the coordinate axes.

 $\therefore I = \cos a, m = \cos a, n = \cos a$

$$l^{2} + m^{2} + n^{2} = 1$$

$$\Rightarrow \cos^{2} \alpha + \cos^{2} \alpha + \cos^{2} \alpha = 1$$

$$\Rightarrow 3\cos^{2} \alpha = 1$$

$$\Rightarrow \cos^{2} \alpha = \frac{1}{3}$$

$$\Rightarrow \cos \alpha = \pm \frac{1}{\sqrt{3}}$$

Thus, the direction cosines of the line, which is equally inclined to the coordinate axes,

$$\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \text{ and } \pm \frac{1}{\sqrt{3}}.$$

Question 3:

If a line has the direction ratios -18, 12, -4, then what are its direction cosines? Answer

If a line has direction ratios of -18, 12, and -4, then its direction cosines are

$$\frac{-18}{\sqrt{(-18)^2 + (12)^2 + (-4)^2}}, \frac{12}{\sqrt{(-18)^2 + (12)^2 + (-4)^2}}, \frac{-4}{\sqrt{(-18)^2 + (12)^2 + (-4)^2}}$$

i.e., $\frac{-18}{22}, \frac{12}{22}, \frac{-4}{22}$
 $\frac{-9}{11}, \frac{6}{11}, \frac{-2}{11}$
 $-\frac{9}{2}, \frac{6}{2}, \text{ and } \frac{-2}{2}$

Thus, the direction cosines are 11'11', and 11.

Question 4:

Show that the points (2, 3, 4), (-1, -2, 1), (5, 8, 7) are collinear.

Answer

The given points are A (2, 3, 4), B (-1, -2, 1), and C (5, 8, 7).

It is known that the direction ratios of line joining the points, (x_1, y_1, z_1) and (x_2, y_2, z_2) , are given by, $x_2 - x_1$, $y_2 - y_1$, and $z_2 - z_1$.

The direction ratios of AB are (-1 - 2), (-2 - 3), and (1 - 4) i.e., -3, -5, and -3.

The direction ratios of BC are (5 - (-1)), (8 - (-2)), and (7 - 1) i.e., 6, 10, and 6.

It can be seen that the direction ratios of BC are -2 times that of AB i.e., they are proportional.

Therefore, AB is parallel to BC. Since point B is common to both AB and BC, points A, B, and C are collinear.

Question 5:

Find the direction cosines of the sides of the triangle whose vertices are (3, 5, -4), (-

1, 1, 2) and (- 5, - 5, - 2)

Answer

The vertices of \triangle ABC are A (3, 5, -4), B (-1, 1, 2), and C (-5, -5, -2).

The direction ratios of side AB are (-1 - 3), (1 - 5), and (2 - (-4)) i.e., -4, -4, and 6.

Then,
$$\sqrt{(-4)^2 + (-4)^2 + (6)^2} = \sqrt{16 + 16 + 36}$$

= $\sqrt{68}$
= $2\sqrt{17}$

Therefore, the direction cosines of AB are

$$\frac{-4}{\sqrt{(-4)^2 + (-4)^2 + (6)^2}}, \frac{-4}{\sqrt{(-4)^2 + (-4)^2 + (6)^2}}, \frac{6}{\sqrt{(-4)^2 + (-4)^2 + (6)^2}}, \frac{-4}{\sqrt{(-4)^2 + (-4)^2 + (6)^2}}, \frac{-4}{\sqrt{17}}, -\frac{4}{2\sqrt{17}}, \frac{6}{2\sqrt{17}}, \frac{-2}{\sqrt{17}}, \frac{-2}{\sqrt{17}}, \frac{3}{\sqrt{17}}$$

The direction ratios of BC are (-5 - (-1)), (-5 - 1), and (-2 - 2) i.e., -4, -6, and -4. Therefore, the direction cosines of BC are

$$\frac{-4}{\sqrt{(-4)^2 + (-6)^2 + (-4)^2}}, \frac{-6}{\sqrt{(-4)^2 + (-6)^2 + (-4)^2}}, \frac{-4}{\sqrt{(-4)^2 + (-6)^2 + (-4)^2}}, \frac{-4}{\sqrt{(-4)^2 + (-6)^2 + (-4)^2}}, \frac{-4}{2\sqrt{17}}, \frac{-4}{2\sqrt{1$$

The direction ratios of CA are (-5 - 3), (-5 - 5), and (-2 - (-4)) i.e., -8, -10, and 2. Therefore, the direction cosines of AC are

Class XII	Chapter 11 – Three Dimensional Geometry		
$\frac{-8}{\sqrt{(-8)^2+(10)^2+(2)^2}}$	$\frac{-5}{\sqrt{(-8)^2 + (10)^2 + (2)^2}}$	$, \frac{2}{\sqrt{(-8)^2 + (10)^2 + (2)^2}}$	
$\frac{-8}{2\sqrt{42}}, \frac{-10}{2\sqrt{42}}, \frac{2}{2\sqrt{42}}$	••••••		

Exercise 11.2

Question 1:

Show that the three lines with direction cosines

 $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}; \frac{4}{13}, \frac{12}{13}, \frac{3}{13}; \frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$ are mutually perpendicular.

Answer

Two lines with direction cosines, l_1 , m_1 , n_1 and l_2 , m_2 , n_2 , are perpendicular to each other, if $l_1l_2 + m_1m_2 + n_1n_2 = 0$

$$12, -3, -4, 4, 12, 3$$

(i) For the lines with direction cosines, 13[']13[']13 and 13[']13[']13, we obtain

$$l_1 l_2 + m_1 m_2 + n_1 n_2 = \frac{12}{13} \times \frac{4}{13} + \left(\frac{-3}{13}\right) \times \frac{12}{13} + \left(\frac{-4}{13}\right) \times \frac{3}{13}$$
$$= \frac{48}{169} - \frac{36}{169} - \frac{12}{169}$$
$$= 0$$

Therefore, the lines are perpendicular.

$$\frac{4}{13}, \frac{12}{13}, \frac{3}{13}, \frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$$

(ii) For the lines with direction cosines, $13^{1}13^{1}13$ and $13^{1}13^{1}13$, we obtain

$$l_1 l_2 + m_1 m_2 + n_1 n_2 = \frac{4}{13} \times \frac{3}{13} + \frac{12}{13} \times \left(\frac{-4}{13}\right) + \frac{3}{13} \times \frac{12}{13}$$
$$= \frac{12}{169} - \frac{48}{169} + \frac{36}{169}$$
$$= 0$$

Therefore, the lines are perpendicular.

(iii) For the lines with direction cosines,
$$\frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$$
 and $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}$, we obtain

Class XII	Chapter 11 – Three Dimensional Geometry	Maths
$l_1 l_2 + m_1 m_2 + n_1 n_2 =$	$= \left(\frac{3}{13}\right) \times \left(\frac{12}{13}\right) + \left(\frac{-4}{13}\right) \times \left(\frac{-3}{13}\right) + \left(\frac{12}{13}\right) \times \left(\frac{-4}{13}\right)$	
=	$=\frac{36}{169}+\frac{12}{169}-\frac{48}{169}$	
=	= 0	

Therefore, the lines are perpendicular.

Thus, all the lines are mutually perpendicular.

Question 2:

Show that the line through the points (1, -1, 2) (3, 4, -2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).

Answer

Let AB be the line joining the points, (1, -1, 2) and (3, 4, -2), and CD be the line joining the points, (0, 3, 2) and (3, 5, 6).

The direction ratios, a_1 , b_1 , c_1 , of AB are (3 - 1), (4 - (-1)), and (-2 - 2) i.e., 2, 5, and -4.

The direction ratios, a_2 , b_2 , c_2 , of CD are (3 - 0), (5 - 3), and (6 - 2) i.e., 3, 2, and 4. AB and CD will be perpendicular to each other, if $a_1a_2 + b_1b_2 + c_1c_2 = 0$

$$a_1a_2 + b_1b_2 + c_1c_2 = 2 \times 3 + 5 \times 2 + (-4) \times 4$$

$$= 6 + 10 - 16$$

= 0

Therefore, AB and CD are perpendicular to each other.

Question 3:

Show that the line through the points (4, 7, 8) (2, 3, 4) is parallel to the line through the points (-1, -2, 1), (1, 2, 5).

Answer

Let AB be the line through the points, (4, 7, 8) and (2, 3, 4), and CD be the line through the points, (-1, -2, 1) and (1, 2, 5).

The directions ratios, a_1 , b_1 , c_1 , of AB are (2 - 4), (3 - 7), and (4 - 8) i.e., -2, -4, and -4.

The direction ratios, a_2 , b_2 , c_2 , of CD are (1 - (-1)), (2 - (-2)), and (5 - 1) i.e., 2, 4, and 4.