Evaluate the following integrals:
Question:

Evaluate the following integrals:

$\int \frac{e^{\operatorname{msin}^{-1} x}}{\sqrt{1-x^{2}}} d x$

Solution:

Assume $\sin ^{-1} x=t$

$d\left(\sin ^{-1} x\right)=d t$

$\Rightarrow \frac{\mathrm{dx}}{\sqrt{1-\mathrm{x}^{2}}}=\mathrm{dt}$

$\therefore$ Substituting $t$ and $d t$ in given equation we get

$\Rightarrow \int \mathrm{e}^{\mathrm{mt}} \mathrm{dt}$

$\Rightarrow \frac{\mathrm{e}^{\mathrm{mt}}}{\mathrm{m}}+\mathrm{c}$

But $t=\sin ^{-1} x$

$\Rightarrow \frac{\mathrm{e}^{\mathrm{msin}^{-1} \mathrm{x}}}{\mathrm{m}}+\mathrm{C}$

Administrator

Leave a comment

Please enter comment.
Please enter your name.