
JEE Main Previous Year Question of Math with Solutions are available at eSaral. Practicing JEE Main Previous Year Papers Questions of mathematics will help the JEE aspirants in realizing the question pattern as well as help in analyzing weak & strong areas. Get detailed Class 11th &12th Physics Notes to prepare for Boards as well as competitive exams like IIT JEE, NEET etc. eSaral helps the students in clearing and understanding each topic in a better way. eSaral is providing complete chapter-wise notes of Class 11th and 12th both for all subjects. Besides this, eSaral also offers NCERT Solutions, Previous year questions for JEE Main and Advance, Practice questions, Test Series for JEE Main, JEE Advanced and NEET, Important questions of Physics, Chemistry, Math, and Biology and many more. Download eSaral app for free study material and video tutorials.
Q. The remainder left out when $8^{2 n}-(62)^{2 n+1}$ is divided by 9 is :-
(1) 7 (2) 8 (3) 0 (4) 2
[AIEEE 2009]
Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...
Sol. (4) $8^{2 \mathrm{n}}-(62)^{2 \mathrm{n}+1}$ $=(63+1)^{\mathrm{n}}-(63-1)^{2 \mathrm{n}+1}$ $=\left(63 \mathrm{I}_{1}+1\right)-\left(63 \mathrm{I}_{2}-1\right)$ $=63 \mathrm{I}_{3}+2=9 \mathrm{I}+2$
Q. Let $S_{1}=\sum_{j=1}^{10} j(j-1)^{10} C_{j}, S_{2}=\sum_{j=1}^{10} j^{10} C_{j}$ and $S_{3}=\sum_{j=1}^{10} j^{20} C_{j}$
Statement-1: $S_{3}=55 \times 2^{9}$.
Statement-2 : $S_{1}=90 \times 2^{8}$ and $S_{2}=10 \times 2^{8}$.
(1) Statement–1 is true, Statement–2 is true ; Statement–2 is a correct explanation for Statement–1.
(2) Statement–1 is true, Statement–2 is true ; Statement–2 is not a correct explanation for Statement–1.
`(3) Statement–1 is true, Statement–2 is false.
(4) Statement–1 is false, Statement–2 is true.
[AIEEE-2010]
Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...
Sol. (3)

Q. The coefficient of $x^{7}$ in the expansion of $\left(1-x-x^{2}+x^{3}\right)^{6}$ is :-
(1) – 144 (2) 132 (3) 144 (4) – 132
[AIEEE 2011]
Q. If $\mathrm{n}$ is a positive integer, then $(\sqrt{3}+1)^{2 \mathrm{n}}-(\sqrt{3}-1)^{2 \mathrm{n}}$ is :
(1) a rational number other than positive integers
(2) an irrational number
(3) an odd positive integer
(4) an even positive integer
[AIEEE 2012]
Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...
Sol. (2) $(\sqrt{3}+1)^{2 n}-(\sqrt{3}-1)^{2 n}$ $=2\left[\mathrm{T}_{2}+\mathrm{T}_{2}+\mathrm{T}_{6}+\ldots \ldots+\mathrm{T}_{2 \mathrm{n}}\right]$ $=2\left[2 \mathrm{n} \mathrm{C}_{1}(\sqrt{3})^{2 n-1}+2 \mathrm{n} \mathrm{C}_{3}(\sqrt{3})^{2 \mathrm{n}-3}+\ldots \ldots \ldots\right]$ $=$ An Irrational Number
Q. The term independent of $x$ in expansion of $\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}$ is :
(1) 4 (2) 120 (3) 210 (4) 310
[JEE-Main 2013]
Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...
Sol. (3) $\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-\sqrt{x}}\right)^{10}$ $\left(\mathrm{x}^{1 / 3}+1-\left(\frac{\sqrt{\mathrm{x}}+1}{\sqrt{\mathrm{x}}}\right)\right)^{10}$ $\left(\mathrm{x}^{1 / 3}-\mathrm{x}^{-1 / 2}\right)^{10}$ $\mathrm{T}_{\mathrm{r}+1}=^{10} \mathrm{C}_{\mathrm{r}}\left(\mathrm{x}^{1 / 3}\right)^{10-\mathrm{r}}\left(\mathrm{x}^{-1 / 2}\right)^{\mathrm{r}}$ $\frac{10-r}{3}-\frac{r}{2}=0$ 20 – 2r = 3r r = 4 $\mathrm{T}_{5}=\mathrm{T}_{4+1}=^{10} \mathrm{C}_{4}=\frac{10 !}{6 ! .4 !}=210$
Q. If the coefficients of $x^{3}$ and $x^{4}$ in the expansion of $\left(1+a x+b x^{2}\right)(1-2 x)^{18}$ in powers of $x$ are both zero, then $(a, b)$ is equal to :-
( 1)$\left(16, \frac{251}{3}\right)$
(2) $\left(14, \frac{251}{3}\right)$
(3) $\left(14, \frac{272}{3}\right)$
( 4)$\left(16, \frac{272}{3}\right)$
[JEE(Main)-2014]
Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...
Sol. (4) In the expansion of $\left(1+a x+b x^{2}\right)(1-2 x)^{18}$ General term $=\left(1+a x+b x^{2}\right) \cdot 18 C_{r}(-2 x)^{r}$ Cofficinet of $x^{3}=18 C_{3}(-2)^{3}+a \cdot\left(8 C_{2}(-2)^{2}+b \cdot 18 C_{1}(-2)=0\right.$ Cofficinet of $\mathrm{x}^{4}=18 \mathrm{C}_{4}(-2)^{4}+\mathrm{a} \cdot^{18} \mathrm{C}_{3}(-2)^{3}+\mathrm{b} \cdot 18 \mathrm{C}_{2}(-2)^{2}=0$ on solving the equations we get $153 \mathrm{a}-9 \mathrm{b}=1632 \quad \ldots$ (i) $3 \mathrm{b}-32 \mathrm{a}=-240 \quad \ldots$ (ii) on solving we get $a=16 \& b=\frac{272}{3}$
Q. The sum of coefficients of integral powers of $x$ in the binomial expansion of $(1-2 \sqrt{x})^{50}$ is :
(1) $\frac{1}{2}\left(3^{50}-1\right)$
(2) $\frac{1}{2}\left(2^{50}+1\right)$
(3) $\frac{1}{2}\left(3^{50}+1\right)$
( 4)$\frac{1}{2}\left(3^{50}\right)$
[JEE(Main)-2015]
Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...
Sol. (3) $\because(1-2 \sqrt{\mathrm{x}})^{50}=50 \mathrm{C}_{0}-^{50} \mathrm{C}_{1}(2 \sqrt{\mathrm{x}})+50 \mathrm{C}_{2}(2 \sqrt{\mathrm{x}})^{2}+\ldots \ldots+50 \mathrm{C}_{50}(2 \sqrt{\mathrm{x}})^{50}$ $\therefore$ consider $(1+2 \sqrt{\mathrm{x}})^{50}=50 \mathrm{C}_{0}+^{50} \mathrm{C}_{1}(2 \sqrt{\mathrm{x}})+\ldots \ldots+50 \mathrm{C}_{50}(2 \sqrt{\mathrm{x}})^{50}$ add both equations and put $\mathrm{x}=1$ $\Rightarrow \mathrm{sum}$ of coefficients of integral powers of $\mathrm{x}=\frac{1}{2}\left(1+3^{50}\right)$
Q. If the number of terms in the expansion of
$\left(1 \frac{2}{x}+\frac{4}{x^{2}}\right)^{n}, x \neq 0,$ is $28,$ then the sum of the
coefficients of all the terms in this expansion, is :-
(1) 729 (2) 64 (3) 2187 (4) 243
[JEE(Main)-2016]
Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...
Sol. (1 or bonus) Number of terms in the expansion of $\left(1-\frac{2}{x}+\frac{4}{x^{2}}\right)^{n}$ is $^{n}+2 C_{2}$ (considering $\frac{1}{x}$ and $\frac{1}{x^{2}}$ distinct) $\therefore n+2 C_{2}=28 \Rightarrow n=6$ $\therefore$ Sum of coefficients $=(1-2+4)^{6}=729$ But number of dissimilar terms actually will be $2 n+1$ (as $\frac{1}{x}$ and $\frac{1}{x^{2}}$ are functions as same variable) Hence it contains error, so a bonus can be expected.
Q. The value of
$\left(21 \mathrm{C}_{1}-10 \mathrm{C}_{1}\right)+\left(21 \mathrm{C}_{2}-^{10} \mathrm{C}_{2}\right)+$
$\left(^{21} \mathrm{C}_{3}-^{10} \mathrm{C}_{3}\right)+\left(21 \mathrm{C}_{4}-^{10} \mathrm{C}_{4}\right)+\ldots .+$
$\left(^{21} \mathrm{C}_{10}-^{10} \mathrm{C}_{10}\right)$ is
(1) $2^{20}-2^{10}$
(2) $2^{21}-2^{11}$
(3) $2^{21}-2^{10}$
(4) $2^{20}-2^{9}$
[JEE(Main)-2017]
Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...
Sol. (1) $\left(^{21} \mathrm{C}_{1}+^{21} \mathrm{C}_{2} \ldots \ldots \ldots+210\right.$ $-\left(^{10} \mathrm{C}_{1}+^{10} \mathrm{C}_{2} \ldots \ldots \ldots .^{10} \mathrm{C}_{10}\right)$ $=\frac{1}{2}\left[\left(^{(21} \mathrm{C}_{1}+\ldots .+^{21} \mathrm{C}_{10}\right)+\left(^{21} \mathrm{C}_{11}+\ldots .2^{21} \mathrm{C}_{20}\right)\right]-\left(2^{10}-1\right)$ $=\frac{1}{2}\left[2^{21}-2\right]-\left(2^{10}-1\right)$ $=\left(2^{20}-1\right)-\left(2^{10}-1\right)=2^{20}-2^{10}$
Q. The sum of the co-efficients of all odd degree terms in the expansion of $(x+\sqrt{x^{3}-1})^{5}+$ $(x-\sqrt{x^{3}-1})^{5},(x>1)$ is-
(1) 0 (2) 1 (3) 2 (4)
Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...
Sol. (3) using $(x+a)^{5}+(x-a)^{5}$ $=2\left[^{5} C_{0} x^{5}+^{5} C_{2} x^{3} \cdot a^{2}+^{5} C_{4} x \cdot a^{4}\right]$ $(x+\sqrt{x^{3}-1})^{5}+(x-\sqrt{x^{3}-1})^{5}$ $=2\left[^{5} C_{0} x^{5}+^{5} C_{2} x^{3}\left(x^{3}-1\right)+^{5} C_{4} x\left(x^{3}-1\right)^{2}\right]$ $\Rightarrow 2\left[x^{5}+10 x^{6}-10 x^{3}+5 x^{7}-10 x^{4}+5 x\right]$ considering odd degree terms, $\quad 2\left[x^{5}+5 x^{7}-10 x^{3}+5 x\right]$ $\therefore$ Sum of coefficients of odd terms is 2
Good questions but too short
.
questions are awesome but we need more questions
thanks
NYC questions
Please add more questions in binomial therom
Ya
Hello
Super
The answer of the question which came in jee 2016 should 243
no 729 is correct answer
Number of terms =(n+1)(n+2)2=28
⇒n=6
∴a0+a1x+a2x2+….+a2nx2n=(1−2x+4×2)n
Put x=1,n=6,a0+a1+a2+…+a2n=36=729
Pls add some more questions
Hello
It’s really very helpful in last 20 day prepration. In few questions whole concept of a chapter is covered and pattern is also clear about exam.
It’s really beneficial for me.
Very good question but printing is not perfect
Good
EXCELLENT QUESTIONS BRO BUT PLZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ ADD SOME MORE QUESTIONS
Please add some more questions
Pls add some more questions
Very helpful!
please upload more question.
Very helpful and useful regular questions
Very Useful and helpful
Easy but few are lengthy
Mujhse toh ek bhi nahi ho rha ha yarrr
Chil bro
good
Very selective and important questions
Very helpful and quality questions
It’s simply excellent and very useful