Binomial Theorem – JEE Main Previous Year Question with Solutions
JEE Main Previous Year Question of Math with Solutions are available at eSaral. Practicing JEE Main Previous Year Papers Questions of mathematics will help the JEE aspirants in realizing the question pattern as well as help in analyzing weak & strong areas.Get detailed Class 11th &12th Physics Notes to prepare for Boards as well as competitive exams like IIT JEE, NEET etc.eSaral helps the students in clearing and understanding each topic in a better way. eSaral is providing complete chapter-wise notes of Class 11th and 12th both for all subjects.Besides this, eSaral also offers NCERT Solutions, Previous year questions for JEE Main and Advance, Practice questions, Test Series for JEE Main, JEE Advanced and NEET, Important questions of Physics, Chemistry, Math, and Biology and many more.Download eSaral app for free study material and video tutorials.
Q. The remainder left out when $8^{2 n}-(62)^{2 n+1}$ is divided by 9 is :-(1) 7             (2) 8               (3) 0             (4) 2 [AIEEE 2009]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (4)$8^{2 \mathrm{n}}-(62)^{2 \mathrm{n}+1}$$=(63+1)^{\mathrm{n}}-(63-1)^{2 \mathrm{n}+1}$$=\left(63 \mathrm{I}_{1}+1\right)-\left(63 \mathrm{I}_{2}-1\right)$$=63 \mathrm{I}_{3}+2=9 \mathrm{I}+2 Q. Let S_{1}=\sum_{j=1}^{10} j(j-1)^{10} C_{j}, S_{2}=\sum_{j=1}^{10} j^{10} C_{j} and S_{3}=\sum_{j=1}^{10} j^{20} C_{j}Statement-1: S_{3}=55 \times 2^{9}.Statement-2 : S_{1}=90 \times 2^{8} and S_{2}=10 \times 2^{8}.(1) Statement–1 is true, Statement–2 is true ; Statement–2 is a correct explanation for Statement–1.(2) Statement–1 is true, Statement–2 is true ; Statement–2 is not a correct explanation for Statement–1.`(3) Statement–1 is true, Statement–2 is false.(4) Statement–1 is false, Statement–2 is true. [AIEEE-2010] Download eSaral App for Video Lectures, Complete Revision, Study Material and much more... Sol. (3)so, statement-2 is wrong. Q. The coefficient of x^{7} in the expansion of \left(1-x-x^{2}+x^{3}\right)^{6} is :-(1) – 144 (2) 132 (3) 144 (4) – 132 [AIEEE 2011] Download eSaral App for Video Lectures, Complete Revision, Study Material and much more... Sol. (1) Q. If \mathrm{n} is a positive integer, then (\sqrt{3}+1)^{2 \mathrm{n}}-(\sqrt{3}-1)^{2 \mathrm{n}} is :(1) a rational number other than positive integers(2) an irrational number(3) an odd positive integer(4) an even positive integer [AIEEE 2012] Download eSaral App for Video Lectures, Complete Revision, Study Material and much more... Sol. (2)(\sqrt{3}+1)^{2 n}-(\sqrt{3}-1)^{2 n}$$=2\left[\mathrm{T}_{2}+\mathrm{T}_{2}+\mathrm{T}_{6}+\ldots \ldots+\mathrm{T}_{2 \mathrm{n}}\right]$$=2\left[2 \mathrm{n} \mathrm{C}_{1}(\sqrt{3})^{2 n-1}+2 \mathrm{n} \mathrm{C}_{3}(\sqrt{3})^{2 \mathrm{n}-3}+\ldots \ldots \ldots\right]$$=$ An Irrational Number

Q. The term independent of $x$ in expansion of $\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}$ is :(1) 4             (2) 120               (3) 210               (4) 310 [JEE-Main 2013]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3)$\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-\sqrt{x}}\right)^{10}$$\left(\mathrm{x}^{1 / 3}+1-\left(\frac{\sqrt{\mathrm{x}}+1}{\sqrt{\mathrm{x}}}\right)\right)^{10}$$\left(\mathrm{x}^{1 / 3}-\mathrm{x}^{-1 / 2}\right)^{10}$$\mathrm{T}_{\mathrm{r}+1}=^{10} \mathrm{C}_{\mathrm{r}}\left(\mathrm{x}^{1 / 3}\right)^{10-\mathrm{r}}\left(\mathrm{x}^{-1 / 2}\right)^{\mathrm{r}}$$\frac{10-r}{3}-\frac{r}{2}=0$20 – 2r = 3rr = 4$\mathrm{T}_{5}=\mathrm{T}_{4+1}=^{10} \mathrm{C}_{4}=\frac{10 !}{6 ! .4 !}=210$

Q. If the coefficients of $x^{3}$ and $x^{4}$ in the expansion of $\left(1+a x+b x^{2}\right)(1-2 x)^{18}$ in powers of $x$ are both zero, then $(a, b)$ is equal to :-( 1)$\left(16, \frac{251}{3}\right)$(2) $\left(14, \frac{251}{3}\right)$(3) $\left(14, \frac{272}{3}\right)$( 4)$\left(16, \frac{272}{3}\right)$ [JEE(Main)-2014]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (4)In the expansion of $\left(1+a x+b x^{2}\right)(1-2 x)^{18}$General term $=\left(1+a x+b x^{2}\right) \cdot 18 C_{r}(-2 x)^{r}$Cofficinet of$x^{3}=18 C_{3}(-2)^{3}+a \cdot\left(8 C_{2}(-2)^{2}+b \cdot 18 C_{1}(-2)=0\right.$Cofficinet of$\mathrm{x}^{4}=18 \mathrm{C}_{4}(-2)^{4}+\mathrm{a} \cdot^{18} \mathrm{C}_{3}(-2)^{3}+\mathrm{b} \cdot 18 \mathrm{C}_{2}(-2)^{2}=0$on solving the equations we get$153 \mathrm{a}-9 \mathrm{b}=1632 \quad \ldots$ (i)$3 \mathrm{b}-32 \mathrm{a}=-240 \quad \ldots$ (ii)on solving we get $a=16 \& b=\frac{272}{3}$

Q. The sum of coefficients of integral powers of $x$ in the binomial expansion of $(1-2 \sqrt{x})^{50}$ is :(1) $\frac{1}{2}\left(3^{50}-1\right)$(2) $\frac{1}{2}\left(2^{50}+1\right)$(3) $\frac{1}{2}\left(3^{50}+1\right)$( 4)$\frac{1}{2}\left(3^{50}\right)$ [JEE(Main)-2015]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3)$\because(1-2 \sqrt{\mathrm{x}})^{50}=50 \mathrm{C}_{0}-^{50} \mathrm{C}_{1}(2 \sqrt{\mathrm{x}})+50 \mathrm{C}_{2}(2 \sqrt{\mathrm{x}})^{2}+\ldots \ldots+50 \mathrm{C}_{50}(2 \sqrt{\mathrm{x}})^{50}$$\therefore consider (1+2 \sqrt{\mathrm{x}})^{50}=50 \mathrm{C}_{0}+^{50} \mathrm{C}_{1}(2 \sqrt{\mathrm{x}})+\ldots \ldots+50 \mathrm{C}_{50}(2 \sqrt{\mathrm{x}})^{50}add both equations and put \mathrm{x}=1$$\Rightarrow \mathrm{sum}$ of coefficients of integral powers of$\mathrm{x}=\frac{1}{2}\left(1+3^{50}\right)$

Q. If the number of terms in the expansion of$\left(1 \frac{2}{x}+\frac{4}{x^{2}}\right)^{n}, x \neq 0,$ is $28,$ then the sum of thecoefficients of all the terms in this expansion, is :-(1) 729              (2) 64                (3) 2187             (4) 243 [JEE(Main)-2016]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (1 or bonus)Number of terms in the expansion of$\left(1-\frac{2}{x}+\frac{4}{x^{2}}\right)^{n}$ is $^{n}+2 C_{2}$ (considering $\frac{1}{x}$ and $\frac{1}{x^{2}}$ distinct)$\therefore n+2 C_{2}=28 \Rightarrow n=6$$\therefore Sum of coefficients =(1-2+4)^{6}=729But number of dissimilar terms actually will be 2 n+1(as \frac{1}{x} and \frac{1}{x^{2}} are functions as same variable)Hence it contains error, so a bonus can be expected. Q. The value of\left(21 \mathrm{C}_{1}-10 \mathrm{C}_{1}\right)+\left(21 \mathrm{C}_{2}-^{10} \mathrm{C}_{2}\right)+$$\left(^{21} \mathrm{C}_{3}-^{10} \mathrm{C}_{3}\right)+\left(21 \mathrm{C}_{4}-^{10} \mathrm{C}_{4}\right)+\ldots .+$$\left(^{21} \mathrm{C}_{10}-^{10} \mathrm{C}_{10}\right) is(1) 2^{20}-2^{10}(2) 2^{21}-2^{11}(3) 2^{21}-2^{10}(4) 2^{20}-2^{9} [JEE(Main)-2017] Download eSaral App for Video Lectures, Complete Revision, Study Material and much more... Sol. (1)\left(^{21} \mathrm{C}_{1}+^{21} \mathrm{C}_{2} \ldots \ldots \ldots+210\right.$$-\left(^{10} \mathrm{C}_{1}+^{10} \mathrm{C}_{2} \ldots \ldots \ldots .^{10} \mathrm{C}_{10}\right)$$=\frac{1}{2}\left[\left(^{(21} \mathrm{C}_{1}+\ldots .+^{21} \mathrm{C}_{10}\right)+\left(^{21} \mathrm{C}_{11}+\ldots .2^{21} \mathrm{C}_{20}\right)\right]-\left(2^{10}-1\right)$$=\frac{1}{2}\left[2^{21}-2\right]-\left(2^{10}-1\right)$$=\left(2^{20}-1\right)-\left(2^{10}-1\right)=2^{20}-2^{10} Q. The sum of the co-efficients of all odd degree terms in the expansion of (x+\sqrt{x^{3}-1})^{5}+ (x-\sqrt{x^{3}-1})^{5},(x>1) is-(1) 0 (2) 1 (3) 2 (4) Download eSaral App for Video Lectures, Complete Revision, Study Material and much more... Sol. (3)using (x+a)^{5}+(x-a)^{5}$$=2\left[^{5} C_{0} x^{5}+^{5} C_{2} x^{3} \cdot a^{2}+^{5} C_{4} x \cdot a^{4}\right]$$(x+\sqrt{x^{3}-1})^{5}+(x-\sqrt{x^{3}-1})^{5}$$=2\left[^{5} C_{0} x^{5}+^{5} C_{2} x^{3}\left(x^{3}-1\right)+^{5} C_{4} x\left(x^{3}-1\right)^{2}\right]$$\Rightarrow 2\left[x^{5}+10 x^{6}-10 x^{3}+5 x^{7}-10 x^{4}+5 x\right]considering odd degree terms,\quad 2\left[x^{5}+5 x^{7}-10 x^{3}+5 x\right]$$\therefore$ Sum of coefficients of odd terms is 2

• January 2, 2022 at 9:50 pm

Very Nice

• August 13, 2021 at 11:18 pm

• April 10, 2021 at 4:09 pm

Hi

• April 10, 2021 at 4:11 pm

Hi

• April 10, 2021 at 4:14 pm

Ravdi 👑

• August 9, 2021 at 4:28 pm

Bewakoof

• March 25, 2021 at 12:39 pm

cvbnm

• February 19, 2021 at 11:16 am

Good questions but too short

• February 19, 2021 at 5:17 pm

.

• February 6, 2021 at 9:21 pm

questions are awesome but we need more questions

• November 9, 2020 at 4:09 pm

thanks

• October 9, 2020 at 12:24 am

NYC questions

• September 12, 2020 at 9:23 pm

• December 6, 2020 at 7:29 am

Ya

• December 24, 2020 at 8:22 pm

Hello

• September 12, 2020 at 9:22 pm

Super

• September 3, 2020 at 8:33 am

The answer of the question which came in jee 2016 should 243

• January 30, 2021 at 11:15 pm

Number of terms =(n+1)(n+2)2=28

⇒n=6

∴a0+a1x+a2x2+….+a2nx2n=(1−2x+4×2)n

Put x=1,n=6,a0+a1+a2+…+a2n=36=729

• August 30, 2020 at 6:32 pm

• August 23, 2020 at 2:58 pm

Hello

• August 20, 2020 at 8:12 pm

It’s really very helpful in last 20 day prepration. In few questions whole concept of a chapter is covered and pattern is also clear about exam.

It’s really beneficial for me.

• August 14, 2020 at 6:35 pm

Very good question but printing is not perfect

• June 21, 2020 at 8:29 am

Good

• June 18, 2020 at 7:12 pm

EXCELLENT QUESTIONS BRO BUT PLZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ ADD SOME MORE QUESTIONS

• June 15, 2020 at 6:03 am

• June 12, 2020 at 3:14 pm

• June 10, 2020 at 3:32 pm

• June 5, 2020 at 10:39 am

Very helpful and useful regular questions

• June 1, 2020 at 7:52 am

• May 25, 2020 at 9:25 am

Easy but few are lengthy

• January 30, 2021 at 8:04 pm

Mujhse toh ek bhi nahi ho rha ha yarrr

• May 21, 2020 at 11:44 am

Chil bro

• May 10, 2020 at 8:55 am

good

• May 10, 2020 at 8:19 am

Very selective and important questions

• May 7, 2020 at 9:35 pm