JEE Main Previous Year Question of Physics with Solutions are available here. Practicing JEE Main Previous Year Papers Questions of Physics will help all the JEE aspirants in realizing the question pattern as well as help in analyzing their weak & strong areas.

Get detailed Class 11th &12th Physics Notes to prepare for Boards as well as competitive exams like IIT JEE, NEET etc.

eSaral helps the students in clearing and understanding each topic in a better way. eSaral is providing complete chapter-wise notes of Class 11th and 12th both for all subjects.

Besides this, eSaral also offers NCERT Solutions, Previous year questions for JEE Main and Advance, Practice questions, Test Series for JEE Main, JEE Advanced and NEET, Important questions of Physics, Chemistry, Math, and Biology and many more.

Download eSaral app for free study material and video tutorials.

*Simulator*

**Previous Years AIEEE/JEE Mains Questions**

**Directions : **Question number 9 contain Statement-1 and Statement-2. Of the four choices given after the statements, choose the one that best discribes the two statements.

**[AIEEE – 2009]**

**Sol.**(1)

**Statement-1 :**Two particles moving in the same direction do not lose all their energy in a completely inelastic collision.

**Statement-2 :** Principle of conservation of momentum holds true for all kinds of collisions.

(1) Statement–1 is true, Statement–2 is false

(2) Statement–1 is true, Statement–2 is true; Statement–2 is the correct explanation of Statement–1

(3) Statement–1 is true, Statement–2 is true; Statement–2 is not the correct explanation

of Statement–1

(4) Statement–1 is false, Statement–2 is true

**[AIEEE – 2010]**

**Sol.**(2)

**Statement – I :** A point particle of mass m moving with speed v collides with stationary point particle of mass M. If the maximum energy loss possible is given as $\mathrm{f}\left(\frac{1}{2}\mathrm{mv}^{2}\right)$then$\mathrm{f}=\left(\frac{\mathrm{m}}{\mathrm{M}+\mathrm{m}}\right)$

**Statement – II :** Maximum energy loss occurs when the particles get stuck together as a result of the collision.

(1) Statement–I is true, Statement–II is true, Statement–II is a correct explanation of Statement–I.

(2) Statement–I is true, Statement–II is true, Statement–II is a not correct explanation of

Statement–I.

(3) Statement–I is true, Statement–II is false.

(4) Statement–I is false, Statement–II is true

**[JEE Mains-2013]**

**Sol.**(4)

Energy loss will be maximum when collision will be perfectly inelastic

(By momentum)

Maximum energy loss $=\mathrm{K}_{\mathrm{i}}-\mathrm{K}_{\mathrm{f}}$

$=\frac{1}{2} \mathrm{mv}^{2}-\frac{1}{2}(\mathrm{m}+\mathrm{M}) \mathrm{v}_{\mathrm{f}}^{2}$

$=\frac{1}{2} \mathrm{mv}^{2}-\frac{1}{2}(\mathrm{m}+\mathrm{M}) \frac{\mathrm{m}^{2} \mathrm{v}^{2}}{(\mathrm{m}+\mathrm{M})^{2}}$

$=\frac{1}{2} \mathrm{mv}^{2}\left[1-\frac{\mathrm{m}}{\mathrm{m}+\mathrm{M}}\right]$

$=\left(\frac{\mathrm{M}}{\mathrm{m}+\mathrm{M}}\right) \frac{1}{2} \mathrm{mv}^{2}$

statement 1 is false.

(1) 56 % (2) 62% (3) 44% (4) 50%

**[JEE Mains-2015]**

**Sol.**(1)

Before collison

Kinetic energy $=\frac{1}{2} \mathrm{m}(2 \mathrm{v})^{2} \times \frac{1}{2} 2 \mathrm{m}(\mathrm{v})^{2}$

$=3 \mathrm{mv}^{2}$

After collison

Applying momentum conservation for inelastic collision

$2 \mathrm{mv} \hat{\mathrm{j}}+\mathrm{m} 2 \mathrm{v} \hat{\mathrm{i}}=3 \mathrm{m} \overrightarrow{\mathrm{v}}_{\mathrm{f}}$

$\left|\overrightarrow{\mathrm{v}}_{\mathrm{f}}\right|=\sqrt{\frac{8}{9}} \mathrm{v}$

$\mathrm{K}_{\mathrm{f}}=\frac{1}{2} \times 3 \mathrm{m} \times\left(\mathrm{v}_{\mathrm{f}}^{2}\right)=\frac{4 \mathrm{mv}^{2}}{3}$

$\% \Delta \mathrm{K}=\frac{\mathrm{K}_{1}-\mathrm{K}_{\mathrm{f}}}{\mathrm{K}_{\mathrm{i}}} \times 100=\frac{5 \mathrm{mv}^{2} / 3}{3 \mathrm{mv}^{2}} \times 100=\frac{5}{9} \times 100=56 \%$

(1) $\frac{5 \mathrm{h}}{8}$

(2) $\frac{3 \mathrm{h}^{2}}{8 \mathrm{R}}$

(3) $\frac{\mathrm{h}^{2}}{4 \mathrm{R}}$

(4) $\frac{3 \mathrm{h}}{4}$

**[JEE Mains-2015]**

**Sol.**(4)

for solid cone c.m. is $\frac{\mathrm{h}}{4}$ from base

so $\mathrm{z}_{0}=\mathrm{h}-\frac{\mathrm{h}}{4}=\frac{3 \mathrm{h}}{4}$

(1) (.28, .89)

(2) (0, 0)

(3) (0, 1)

(4) (.89, .28)

**[JEE Mains-2018]**

**Sol.**(4)

Let initial speed of neutron is $\mathrm{v}_{0}$ and kinetic energy is K.

1st collision :

by momentum conservation

$\mathrm{mv}_{0}=\mathrm{mv}_{1}+2 \mathrm{mv}_{2} \Rightarrow \mathrm{v}_{1}+2 \mathrm{v}_{2}=\mathrm{v}_{0}$

by $\mathrm{e}=1 \quad \mathrm{v}_{2}-\mathrm{v}_{1}=\mathrm{v}_{0}$

(1) $\sqrt{2} \mathrm{v}_{0}$

(2)$\frac{\mathrm{v}_{0}}{2}$

(3) $\frac{\mathrm{v}_{0}}{\sqrt{2}}$

(4) $\frac{\mathrm{v}_{0}}{4}$

**[JEE Mains-2018]**

**Sol.**(1)

Initial

[/esquestion]