Ellipse – JEE Main Previous Year Question with Solutions
JEE Main Previous Year Question of Math with Solutions are available at eSaral. Practicing JEE Main Previous Year Papers Questions of mathematics will help the JEE aspirants in realizing the question pattern as well as help in analyzing weak & strong areas. eSaral helps the students in clearing and understanding each topic in a better way. eSaral is providing complete chapter-wise notes of Class 11th and 12th both for all subjects. Besides this, eSaral also offers NCERT Solutions, Previous year questions for JEE Main and Advance, Practice questions, Test Series for JEE Main, JEE Advanced and NEET, Important questions of Physics, Chemistry, Math, and Biology and many more. Download eSaral app for free study material and video tutorials.
Q. The ellipse $x^{2}+4 y^{2}=4$ is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point (4, 0). Then the equation of the ellipse is :- (1) $4 x^{2}+48 y^{2}=48$ (2) $4 x^{2}+64 y^{2}=48$ (3) $x^{2}+16 y^{2}=16$ (4) $x^{2}+12 y^{2}=16$ [AIEEE-2009]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (4)  Q. Equation of the ellipse whose axes are the axes of coordinates and which passes through the point (–3, 1) and has eccentricity $\sqrt{2 / 5}$ is :- (1) $3 x^{2}+5 y^{2}-15=0$ (2) $5 x^{2}+3 y^{2}-32=0$ (3) $3 x^{2}+5 y^{2}-32=0$ (4) $5 x^{2}+3 y^{2}-48=0$ [AIEEE-2011]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3) $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{b}^{2}}=1 \mathrm{e}=\sqrt{\frac{2}{5}}$ It passes through $(-3,1)$ so $\frac{9}{a^{2}}+\frac{1}{b^{2}}=1$ …..(1) also $1-\frac{b^{2}}{a^{2}}=e^{2} \Rightarrow 1-\frac{b^{2}}{a^{2}}=\frac{2}{5}$ $\frac{b^{2}}{a^{2}}=\frac{3}{5}$ …..(2) solve $(1) \&(2) \mathrm{a}^{2}=\frac{32}{3}, \mathrm{b}^{2}=\frac{32}{5} 0$

Q. An ellipse is drawn by taking a diameter of the circle $(x-1)^{2}+y^{2}=1$ as its semi-minor axis and a diameter of the circle $x^{2}+(y-2)^{2}=4$ as its semi-major axis. If the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is : (1) $x^{2}+4 y^{2}=16$ (2) $4 x^{2}+y^{2}=4$ (3) $x^{2}+4 y^{2}=8$ (4) $4 x^{2}+y^{2}=8$ [AIEEE-2012]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (1) Let the equation of ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ from the given conditions $\mathrm{a}=4$ and $\mathrm{b}=2$ $\therefore \mathrm{Eq}$ of ellipse is $\frac{\mathrm{x}^{2}}{16}+\frac{\mathrm{y}^{2}}{4}=1$ or $\mathrm{x}^{2}+4 \mathrm{y}^{2}=16$

Q. Statement-1: An equation of a common tangent to the parabola $\mathrm{y}^{2}=16 \sqrt{3} \mathrm{x}$ and the ellipse $2 \mathrm{x}^{2}+\mathrm{y}^{2}=4$ is $\mathrm{y}=2 \mathrm{x}+2 \sqrt{3}$ Statement-2: If the line $y=m x+\frac{4 \sqrt{3}}{m},(m \neq 0)$ is a common tangent to the parabola $y^{2}=$ $$16 \sqrt{3} x \text { and the ellipse } 2 x^{2}+y^{2}=4, \text { then } m \text { satisfies } m^{4}+2 m^{2}=24$$ (1) Statement–1 is true, Statement–2 is false. (2) Statement–1 is false, Statement–2 is true. (3) Statement–1 is true, Statement–2 is true ; Statement–2 is a correct explanation for Statement–1. (4) Statement–1 is true, Statement–2 is true ; Statement–2 is not a correct explanation for Statement– 1. [AIEEE-2012]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3) Let equation of any tangent to $\mathrm{y}^{2}=16 \sqrt{3} \mathrm{x}$ be $\mathrm{y}=\mathrm{mx}+\frac{4 \sqrt{3}}{\mathrm{m}}$ and equation of any tangent to $2 \mathrm{x}^{2}+\mathrm{y}^{2}=4$ be $\mathrm{y}=\mathrm{mx}+\sqrt{2 \mathrm{m}^{2}+4} \ldots \ldots$ (ii) but $(\mathrm{i})$ and (ii) are same lines $\therefore \frac{4 \sqrt{3}}{\mathrm{m}}=\sqrt{2 \mathrm{m}^{2}+4}$ $\Rightarrow \mathrm{m}^{4}+2 \mathrm{m}^{2}-24=0$ $\Rightarrow \mathrm{m}^{2}=-6,4$ $\therefore \mathrm{m}=\pm 2$

Q. The equation of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having centre at $(0,3)$ is : (1) $x^{2}+y^{2}-6 y-7=0$ (2) $x^{2}+y^{2}-6 y+7=0$ (3) $x^{2}+y^{2}-6 y-5=0$ (4) $x^{2}+y^{2}-6 y+5=0$ [JEE (Main)-2013]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (1) $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ $e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\frac{\sqrt{7}}{4}$ foci $(\pm a e, 0) \equiv(\pm \sqrt{7}, 0)$ centre of circle is $(0,3)$ $\mathrm{x}^{2}+\mathrm{y}^{2}-6 \mathrm{y}+\mathrm{c}=0$ passes through $(\sqrt{7}, 0)$ $7+0-0+\mathrm{c}=0$ $\mathrm{c}=-7$ So $\mathrm{x}^{2}+\mathrm{y}^{2}-6 \mathrm{y}-7=0$

Q. If a and $c$ are positive real number and the ellipse $\frac{x^{2}}{4 c^{2}}+\frac{y^{2}}{c^{2}}=1$ has four distinct points in common with the circle $x^{2}+y^{2}=9 a^{2},$ then (1) $6 \mathrm{ac}+9 \mathrm{a}^{2}-2 \mathrm{c}^{2}>0$ (2) $6 a c+9 a^{2}-2 c^{2}<0$ (3) $9 \mathrm{ac}-9 \mathrm{a}^{2}-2 \mathrm{c}^{2}<0$ (4) $9 \mathrm{ac}-9 \mathrm{a}^{2}-2 \mathrm{c}^{2}>0$ [JEE-Main (On line)-2013]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (4) $\mathrm{c}<3 \mathrm{a}<2 \mathrm{c}$ $3 \mathrm{a}-\mathrm{c}>0$ $2 \mathrm{c}-3 \mathrm{a}>0$ $\because(3 \mathrm{a}-\mathrm{c})(2 \mathrm{c}-3 \mathrm{a})>0$ $9 \mathrm{ac}-9 \mathrm{a}^{2}-2 \mathrm{c}^{2}>0$

Q. Equation of the line passing through the points of intersection of the parabola $x^{2}=8 y$ and the ellipse $\frac{x^{2}}{3}+y^{2}=1$ is : – (1) y + 3 = 0 (2) 3y + 1 = 0 (3) 3y – 1 = 0 (4) y – 3 = 0 [JEE-Main (On line)-2013]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3) Put $x^{2}=8 y$ in $\frac{x^{2}}{3}+y^{2}=1$ $\quad=(y+3)(3 y-1)=0$ $\mathrm{y}+3=0$ $3 \mathrm{y}-1=0$

Q. Let the equations of two ellipses be $\mathrm{E}_{1}: \frac{\mathrm{x}^{2}}{3}+\frac{\mathrm{y}^{2}}{2}=1$ and $\mathrm{E}_{2}: \frac{\mathrm{x}^{2}}{16}+\frac{\mathrm{y}^{2}}{\mathrm{b}^{2}}=1 .$ If the product of their eccentricities is $\frac{1}{2},$ then the length of the minor axis of ellipse $\mathrm{E}_{2}$ is :- (1) 9          (2) 8             (3) 2              (4) 4 [JEE-Main (On line)-2013]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (4) $\mathrm{e}_{1} \mathrm{e}_{2}=\frac{1}{2}$ $\Rightarrow \quad \sqrt{1-\frac{2}{3}} \sqrt{1-\frac{\mathrm{b}^{2}}{16}}=\frac{1}{2} \quad$ if $16>\mathrm{b}^{2}$ $=\left(16-\mathrm{b}^{2}\right)=12$ $=\mathrm{b}^{2}=4 \quad \Rightarrow \mathrm{b}=2$ length of minor axis = 4

Q. If the curves $\frac{x^{2}}{\alpha}+\frac{y^{2}}{4}=1$ and $y^{3}=16 x$ intersect at right angles, then a value of $\alpha$ is : (1) $\frac{4}{3}$ (2) $\frac{3}{4}$ (3) $\frac{1}{2}$ (4) 2 [JEE-Main (On line)-2013]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (1) $\frac{\mathrm{x}^{2}}{\alpha}+\frac{\mathrm{y}^{2}}{4}=1 \& \mathrm{y}^{3}=16 \mathrm{x}$ d.w.r. to x. $\frac{2 \mathrm{x}}{\alpha}+\frac{\mathrm{y}}{2} \mathrm{y}^{\prime}=0 \quad \& \quad 3 \mathrm{y}^{2} \mathrm{y}^{\prime}=16$ $\mathrm{y}^{\prime}=-\frac{4 \mathrm{x}}{\alpha \mathrm{y}} \& \mathrm{y}^{\prime}=\frac{16}{3 \mathrm{y}^{2}}$ Both are orthogonal $\Rightarrow-\frac{4 \mathrm{x}}{\alpha \mathrm{y}} \cdot \frac{16}{3 \mathrm{y}^{2}}=-1$ $\alpha=\frac{4}{3} \quad$ as $\left(16 \mathrm{x}=\mathrm{y}^{3}\right)$

Q. A point on the ellipse, $4 \mathrm{x}^{2}+9 \mathrm{y}^{2}=36,$ where the normal is parallel to the line, $4 \mathrm{x}-2 \mathrm{y}-5$ $=0,$ is : $-$ (1) $\left(\frac{8}{5},-\frac{9}{5}\right)$ (2) $\left(-\frac{9}{5}, \frac{8}{5}\right)$ ( 3)$\left(\frac{8}{5}, \frac{9}{5}\right)$ ( 4)$\left(\frac{9}{5}, \frac{8}{5}\right)$ [JEE-Main (On line)-2013]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (4) $\frac{\mathrm{x}^{2}}{9}+\frac{\mathrm{y}^{2}}{4}=1$ Any point $(3 \cos \theta, 2 \mathrm{sin} \theta)$ Slope of normal $=2$ Slope of tangent $=-\frac{1}{2}=-\frac{2 \cos \theta}{3 \sin \theta}$ $\tan \theta=\frac{4}{3}$ $\sin \theta=\frac{4}{5} \quad \cos \theta=\frac{3}{5}$ Point $\left(\frac{9}{5}, \frac{8}{5}\right)$

Q. The locus of the foot of perpendicular drawn from the centre of the ellipse $x^{2}+3 y^{2}=6$ on any tangent to it is :- (1) $\left(x^{2}-y^{2}\right)^{2}=6 x^{2}+2 y^{2}$ (2) $\left(x^{2}-y^{2}\right)^{2}=6 x^{2}-2 y^{2}$ (3) $\left(x^{2}+y^{2}\right)^{2}=6 x^{2}+2 y^{2}$ (4) $\left(x^{2}+y^{2}\right)^{2}=6 x^{2}-2 y^{2}$ [JEE(Main)-2014]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3) Let the foot of perpendicular be (h, k) then $\mathrm{m}_{\mathrm{op}}=\frac{\mathrm{k}}{\mathrm{h}}$ equation of tangent is $\mathrm{y}=\mathrm{mx} \pm \sqrt{\mathrm{a}^{2} \mathrm{m}^{2}+\mathrm{b}^{2}}$ $\mathrm{y}=\mathrm{mx} \pm \sqrt{6 \mathrm{m}^{2}+2}$ satisfied by $(\mathrm{h}, \mathrm{k})$ and $\mathrm{m}=-\frac{1}{\mathrm{m}_{\mathrm{op}}}=-\frac{\mathrm{h}}{\mathrm{k}}$ $\left(\mathrm{k}+\frac{\mathrm{h}^{2}}{\mathrm{k}}\right)^{2}=\frac{6 \mathrm{h}^{2}}{\mathrm{k}^{2}}+2$ multiply by $\mathrm{k}^{2}$ $\left(\mathrm{k}^{2}+\mathrm{h}^{2}\right)^{2}=6 \mathrm{h}^{2}+2 \mathrm{k}^{2}$ $\Rightarrow\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}=6 \mathrm{x}^{2}+2 \mathrm{y}^{2}$

Q. The area (in sq. units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ is : (1) $\frac{27}{2}$ (2) 27 (3) $\frac{27}{4}$ (4) 18 [JEE(Main)-2015]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (2)  Q. The eccentricity of an ellipse centre is at the origin is $\frac{1}{2} .$ If one of its directices is $\mathrm{x}=-4,$ then the equation of the normal to it at $\left(1, \frac{3}{2}\right)$ is : – (1) x + 2y = 4 (2) 2y – x = 2 (3) 4x – 2y = 1 (4) 4x + 2y = 7 [JEE(Main)-2017]

Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...

Sol. (3) Eccentricity of ellipse $=\frac{1}{2}$  • February 17, 2021 at 2:52 pm

Thank you

0
• February 13, 2021 at 5:15 pm

No questions after 2017 and here I am in 2021?

4
• December 28, 2020 at 7:02 am

Thanks a lot 😊.

4
• October 12, 2020 at 11:54 pm

👍👍👍👍

0
• October 25, 2020 at 10:21 am

Nice👍👍

0
• August 16, 2020 at 8:10 am

Plz try to update the questions from recent years too. Good questions. Thank you

1
• August 10, 2020 at 8:05 pm

Thanks

0
• August 6, 2020 at 4:16 pm

update latest quesations

1
• July 23, 2020 at 8:59 pm

Nice Questions

0
• July 19, 2020 at 12:32 am

Good

0
• July 16, 2020 at 11:47 pm

I want to see 2018,2019 & 2020 questions also since the pattern has been changed with the year.plz…. update as fast as possible .

0
• July 6, 2020 at 12:46 pm

Good questions and quality of questions has been increasing from year to year

0
• June 23, 2020 at 5:46 pm

yup good…

0
• June 3, 2020 at 8:10 am

What did Jayasree say it is correct.

0
• May 22, 2020 at 11:42 am

Chill bro

0
• May 16, 2020 at 3:09 pm

Plz give all the previous years questions related to some chapter

0
• April 10, 2020 at 2:00 pm

It would be very better if there are questions from remaining years also

0
• December 22, 2020 at 10:01 pm

u are absolutely correct jayasree

0