Deepak Scored 45->99%ile with Bounce Back Crack Course. You can do it too!

Gravitation - JEE Main Previous Year Questions with Solutions

JEE Main Previous Year Question of Physics with Solutions are available here. Practicing JEE Main Previous Year Papers Questions of Physics will help all the JEE aspirants in realizing the question pattern as well as help in analyzing their weak & strong areas. Get detailed Class 11th &12th Physics Notes to prepare for Boards as well as competitive exams like IIT JEE, NEET etc. eSaral helps the students in clearing and understanding each topic in a better way. eSaral is providing complete chapter-wise notes of Class 11th and 12th both for all subjects. Besides this, eSaral also offers NCERT Solutions, Previous year questions for JEE Main and Advance, Practice questions, Test Series for JEE Main, JEE Advanced and NEET, Important questions of Physics, Chemistry, Math, and Biology and many more. Download eSaral app for free study material and video tutorials.   Simulator   Previous Years AIEEE/JEE Mains Questions
Q. The height at which the acceleration due to gravity becomes $\frac{g}{9}$ (where g = the acceleration due to gravity on the surface of the earth) in terms of R, the radius of the earth, is :- (1) $\frac{\mathrm{R}}        {2}$ (2) $\sqrt{2} \mathrm{R}$           (3) 2R             (4) $\frac{\mathrm{R}}{\sqrt{2}}$ [AIEEE - 2009]
Ans. (3) $\mathrm{g}_{\mathrm{h}}=\frac{\mathrm{g}}{\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)^{2}} \Rightarrow\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)^{2}=\frac{\mathrm{g}}{\mathrm{g}_{\mathrm{h}}}=9$ $\Rightarrow 1+\frac{\mathrm{h}}{\mathrm{R}}=3 \Rightarrow \mathrm{h}=2 \mathrm{R}$
Q. Two bodies of masses m and 4m are placed at a distance r. The gravitational potential at a point on the line joining them where the gravitational field is zero is :- $(1)-\frac{6 \mathrm{Gm}}{\mathrm{r}}$ $(2)-\frac{9 \mathrm{Gm}}{\mathrm{r}}$ (3) zero $(4)-\frac{4 \mathrm{Gm}}{\mathrm{r}}$ [AIEEE - 2011]
Ans. (2)
Q. Two particles of equal mass 'm' go around a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle with respect to their centre of mass is:- (1) $\sqrt{\frac{\mathrm{Gm}}{\mathrm{R}}}$         (2) $\sqrt{\frac{\mathrm{Gm}}{4 \mathrm{R}}}$         (3) $\sqrt{\frac{\mathrm{Gm}}{3 \mathrm{R}}}$           (4) $\sqrt{\frac{\mathrm{Gm}}{2 \mathrm{R}}}$ [AIEEE-2011]
Ans. (2)
Q. The mass of a spaceship is 1000 kg. It is to be launched from the earth's surface out into free space. The value of 'g' and 'R' (radius of earth) are 10 m/s2 and 6400 km respectively. The required energy for this work will be :- (1) $6.4 \times 10^{10}$ Joules (2) $6.4 \times 10^{11}$ Joules (3) $6.4 \times 10^{8}$ Joules (4) $6.4 \times 10^{9}$ Joules [AIEEE-2012]
Ans. (1) $\mathrm{PE}_{\mathrm{i}}+\mathrm{KE}_{\mathrm{i}}=\mathrm{PE}_{\mathrm{f}}+\mathrm{KE}_{\mathrm{f}}$ $-\mathrm{mgR}+\mathrm{KE}_{\mathrm{i}}=0+0$ $\mathrm{KE}_{\mathrm{i}}=+\mathrm{mgR}=1000 \times 10 \times 6.4 \times 10^{6}$ work done $=6.4 \times 10^{10} \mathrm{J}$
Q. What is the minimum energy required to launch a satellite of mass m from the surface of a planet of mass M and radius R in a circular orbit at an altitude of 2R ? (1) $\frac{5 \mathrm{GmM}}{6 \mathrm{R}}$         (2) $\frac{2 \mathrm{GmM}}{3 \mathrm{R}}$        (3) $\frac{\mathrm{GmM}}{2 \mathrm{R}}$        (4) $\frac{\mathrm{GmM}}{3 \mathrm{R}}$ [JEE-Mains 2013]
Ans. (1) From energy conservation $\frac{\mathrm{GMm}}{\mathrm{R}}+\mathrm{KE}=\frac{-\mathrm{GMm}}{3 \mathrm{R}}+\frac{1}{2} \mathrm{mV}^{2} \ldots(\mathrm{i})$ ...(i) From force balance at A, $\frac{\mathrm{GMm}}{(3 \mathrm{R})^{2}}=\frac{\mathrm{mv}^{2}}{3 \mathrm{R}} \Rightarrow \mathrm{V}^{2}=\frac{\mathrm{GM}}{3 \mathrm{R}}$ ...........(ii) from (i) & (ii) $\mathrm{KE}_{\text {suface }}=\frac{5}{6} \frac{\mathrm{GMm}}{\mathrm{R}}$
Q. Four particles, each of mass M and equidistant from each other, move along a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is : (1) $\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}(1+2 \sqrt{2})}$ (2) $\frac{1}{2} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}}(1+2 \sqrt{2})}$ (3) $\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}}$ (4) $\sqrt{2 \sqrt{2} \frac{\mathrm{GM}}{\mathrm{R}}}$ [JEE-Mains 2014]
Ans. (2) Net force on one particle $\mathrm{F}_{\mathrm{net}}=\mathrm{F}_{1}+2 \mathrm{F}_{2} \cos 45^{\circ}=$ Centripetal force $\Rightarrow \frac{\mathrm{GM}^{2}}{(2 \mathrm{R})^{2}}+\left[\frac{2 \mathrm{GM}^{2}}{(\sqrt{2} \mathrm{R})^{2}} \cos 45^{\circ}\right]=\frac{\mathrm{MV}^{2}}{\mathrm{R}}$ $\mathrm{V}=\frac{1}{2} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}}(1+2 \sqrt{2})}$ $\mathrm{V}=-\frac{\mathrm{GM}}{2 \mathrm{R}^{3}}\left[3 \mathrm{R}^{2}-\frac{\mathrm{R}^{2}}{4}\right]+\frac{3 \mathrm{G}}{2} \frac{\mathrm{M}}{8 \frac{\mathrm{R}}{2}}$ $=\frac{-11 \mathrm{GM}}{8 \mathrm{R}}+\frac{3 \mathrm{GM}}{8 \mathrm{R}}=-\frac{\mathrm{GM}}{\mathrm{R}}$
Q. From a solid sphere of mass M and radius R, a spherical portion of radius $\frac{\mathrm{R}}{2}$ is removed, as shown in the figure. Taking gravitational potential V = 0 at r = $\infty$, the potential at the centre of the cavity thus formed is : (G = gravitational constant) (1) $\frac{-2 \mathrm{GM}}{3 \mathrm{R}}$ (2) $\frac{-2 \mathrm{GM}}{\mathrm{R}}$ (3) $\frac{-\mathrm{GM}}{2 \mathrm{R}}$ (4) $\frac{-\mathrm{GM}}{\mathrm{R}}$ [JEE-Mains 2015]
Ans. (4) By principle of superosition $\mathrm{V}=-\frac{\mathrm{GM}}{2 \mathrm{R}^{3}}\left[3 \mathrm{R}^{2}-\frac{\mathrm{R}^{2}}{4}\right]+\frac{3 \mathrm{G}}{2} \frac{\mathrm{M}}{8 \frac{\mathrm{R}}{2}}$ $=\frac{-11 \mathrm{GM}}{8 \mathrm{R}}+\frac{3 \mathrm{GM}}{8 \mathrm{R}}=-\frac{\mathrm{GM}}{\mathrm{R}}$
Q. A satellite is reolving in a circular orbit at a height 'h' from the earth's surface (radius of earth R ; h << R). The minimum increase in its orbital velocity required, so that the satellite could escape from the earth's gravitational field, is close to : (Neglect the effect of atmosphere). (1) $\sqrt{\mathrm{gR}}(\sqrt{2}-1)$ (2) $\sqrt{2 \mathrm{gR}}$ (3) $\sqrt{\mathrm{gR}}$ (4) $\sqrt{\mathrm{gR} / 2}$ [JEE-Mains 2016]
Ans. (1) $\mathrm{V}_{0}=\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}}$ or $\sqrt{\mathrm{gR}}$ $\mathrm{V}_{\mathrm{e}} \sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}$ or $\sqrt{2 \mathrm{gR}}$ $\therefore$ Increase in velocity $=\sqrt{\mathrm{gR}}[\sqrt{2}-1]$
Q. The variation of acceleration due to gravity g with distance d from centre of the earth is best represented by (R = Earth's radius) :- [JEE-Mains 2017]
Ans. (2) $\mathrm{g}=\frac{\mathrm{GMx}}{\mathrm{R}^{3}}$ inside the Earth (straight line) $\mathrm{g}=\frac{\mathrm{GM}}{\mathrm{r}^{2}}$ outside the Earth where M is Mass of Earth option (2)

Leave a comment

Comments

nhà cái casino fb88 - Dec. 2, 2022, 12:12 p.m.


lúc chơi những trò chơi casino trực tuyến tại nhà cái casino fb88, bạn đề nghị yêu cầu nắm bắt được mục tiêu của mình. nếu chơi cho vui thì game thủ không bắt buộc phải tìm hiểu quá nhiều. Còn nếu muốn giành chiến thắng, bạn cần chú ý các kinh nghiệm chơi Bull Bull fb88 bet1 tại: https://nhacaicacuoc.com/kinh-nghiem-choi-bull-bull-fb88-hieu-qua/ driver: https://drive.google.com/drive/folders/1ePw26bg2rt85nb9gsa6NpYMFGCgaUr9g https://nhacaicacuoc.com/casino-fb88/

w88 casino - Dec. 1, 2022, 9:30 a.m.


Để tham gia những games bài ăn tiền thật tại w88 online thì đầu tiên người chơi nên tìm một nhà cái minh bạch, uy tín và tạo 1 tài khoản tại nhà cái hợp lí đó. Hãy nhanh nhẹn tới đối với w88 live casino trực tuyến hợp pháp, minh bạch hàng đầu VN cũng như Châu Á. driver: https://drive.google.com/drive/folders/1xhXUdMvzbZYDpLi-DNW3D3h4vItTkQUj https://w88xin.com/casino-w88/ Nguồn: https://w88xin.com/huong-dan-cach-choi-danh-bai-w88-an-tien-de-nhat/

đánh giá w88 - Nov. 21, 2022, 9:56 a.m.


Hiện nay, chúng ta lựa chọn hình thức chơi Roulette tại nhà cái trên mạng nhiều hơn là tới những sòng bài trực tiếp. Điều đó giúp chúng ta thuận tiện lúc tham gia cá độ, tiết kiệm thời gian vô cùng. Tuy nhiên, để tránh bị lừa đảo thì khách hàng cần chọn cho mình 1 nhà cái uy tín nhất, hoạt động công khai, có giấy phép. người chơi có thể lựa chọn w88 trực tuyến vì nhà cái này trả thưởng nhanh lẹ, kết quả đặt cược công bằng, minh bạch. Nguồn: https://w88xin.com/chien-thuat-va-kinh-nghiem-choi-roulette-tai-w88/ Google site: https://drive.google.com/drive/folders/1xhXUdMvzbZYDpLi-DNW3D3h4vItTkQUj https://w88xin.com/

vòng loại world cup 2022 nam mỹ - Nov. 18, 2022, 9:02 a.m.


những trò chơi dưới đây ko được tính vào tổng doanh thu đặt cược tại A – Thể Thao: Racing, Live Casino, Arcadia Gaming, Happy 5, Thể Thao Ảo, Saba.Club, Minigame, RNG Keno/Xổ Số, trò chơi Ảo https://nhacaicacuoc.com/co-bao-nhieu-doi-tuyen-nam-my-tham-du-world-cup/

Satyam - Feb. 2, 2022, 6:09 p.m.


nice Question with good explanation

Ananya - Sept. 25, 2021, 10:57 a.m.


More questions are required btw is really a good app

LALA - June 12, 2021, 12:01 p.m.


It is good test, but more questions are required

Venu - June 3, 2021, 11:25 p.m.


Want some more questions

student - Jan. 23, 2021, 8:59 p.m.


solution text isnt clear at all

Sai - Jan. 20, 2021, 7:33 p.m.


It's good , but add some more questions

Sreehari R - Jan. 9, 2021, 3:39 p.m.


need more questions

Zeeshan - Nov. 3, 2020, 8 p.m.


Questions till 2020 would be great sir.

NIHARIKA - Oct. 29, 2020, 2:28 p.m.


we want latest years questions but it helps a lot

Anurag Mishra - Oct. 26, 2020, 9:25 p.m.


Thanks for this content

shreya - Oct. 13, 2020, 2:07 a.m.


amazing ques bank

niki - Oct. 10, 2020, 4:40 p.m.


great yaar........

Neelaveni. K - Oct. 7, 2020, 12:42 p.m.


Thanks and want more questions

sanika k - Sept. 20, 2020, 10:45 p.m.


Want more anyways thanks so much

Asawari keripale - Sept. 9, 2020, 2:18 p.m.


All topics are not covered but still nice collection

MAHEK - Aug. 30, 2020, 4:36 p.m.


nice collection

Nayem - Aug. 22, 2020, 8:01 p.m.


Thanks for this kind of helping hand.Waiting for more♥

Shiv - Aug. 9, 2020, 9:58 a.m.


Thanks it was really helpful.

Idk - July 22, 2020, 11:56 p.m.


Jee adv?

Pranathi - June 22, 2020, 6:32 a.m.


Need some more questions

ABCD - June 10, 2020, 2:41 p.m.


NICE.NEED SOME MORE QUESTIONS

nancy - June 5, 2020, 3:41 p.m.


thanks .. it was enlightening

Khushi gupta - May 15, 2020, 8:34 a.m.


Thanks , it's very useful....

Abhay yadav - Feb. 20, 2020, 11:46 a.m.


Kamino kaha hai previous year questiond

None
Free Study Material