JEE Main Previous Year Question of Physics with Solutions are available here. Practicing JEE Main Previous Year Papers Questions of Physics will help all the JEE aspirants in realizing the question pattern as well as help in analyzing their weak & strong areas.

Get detailed Class 11th &12th Physics Notes to prepare for Boards as well as competitive exams like IIT JEE, NEET etc.

eSaral helps the students in clearing and understanding each topic in a better way. eSaral is providing complete chapter-wise notes of Class 11th and 12th both for all subjects.

Besides this, eSaral also offers NCERT Solutions, Previous year questions for JEE Main and Advance, Practice questions, Test Series for JEE Main, JEE Advanced and NEET, Important questions of Physics, Chemistry, Math, and Biology and many more.

Download eSaral app for free study material and video tutorials.

*Simulator*

**Previous Years JEE Advanced Questions**

**[IIT-JEE 2011]**

**Sol.**5

**[JEE Advanced 2014]**

**Sol.**8 or 2

Assuming open chamber

$\mathrm{V}_{\text {relative }}=0.5 \mathrm{m} / \mathrm{s}$

$S_{\text {relative }}=4 \mathrm{m}$

time $=\frac{4}{0.5}=8 \mathrm{s}$

Alternate

Assuming closed chamber

In the frame of chamber :

Maximum displacement of ball A from its left end is $\frac{\mathrm{u}_{\mathrm{A}}^{2}}{2 \mathrm{a}}=\frac{(0.3)^{2}}{2(2)}=0.0225 \mathrm{m}$

This is negligible with respect to the length of chamber i.e. 4m. So, the collision will be very close to the left end.

Hence, time taken by ball B to reach left end will be given by

$\mathrm{S}=\mathrm{u}_{\mathrm{B}} \mathrm{t}+\frac{1}{2} \mathrm{at}^{2}$

$4=(0.2)(t)+\frac{1}{2}(2)(t)^{2}$

Solving this, we get

$\mathrm{t} \approx 2 \mathrm{s}$

**[JEE Advanced 2014]**

**Sol.**5

As observed from A, B moves perpendicular to line of motion of A. It means velocity of B along A is equal to velocity of A

$\mathrm{V}_{\mathrm{B}} \cos 30=100 \sqrt{3}$

$\mathrm{V}_{\mathrm{B}}=200$

If A is observer A remains stationary therefore

$\mathrm{t}=\frac{500}{\mathrm{V}_{\mathrm{B}} \sin 30}=\frac{500}{100}=5$

**[JEE Advanced 2018]**

**Sol.**30

$\mathrm{H}_{1}=\frac{\mathrm{u}^{2} \sin ^{2} 45}{2 \mathrm{g}}=120$

$\Rightarrow \frac{\mathrm{u}^{2}}{4 \mathrm{g}}=120$ ….(i)

when half of kinetic energy is lost $\mathrm{v}=\frac{\mathrm{u}}{\sqrt{2}}$

$\mathrm{H}_{2}=\frac{\left(\frac{\mathrm{u}}{\sqrt{2}}\right)^{2} \sin ^{2} 30}{2 \mathrm{g}}=\frac{\mathrm{u}^{2}}{16 \mathrm{g}}$

from (i) & (ii)

$\mathrm{H}_{2}=\frac{\mathrm{H}_{1}}{4}=30 \mathrm{m}$ on 30.00